The initiation and intensity of warm rain are processes dominated by the evolution of cloud droplet spectra.To treat the cloud condensation process properly is a fundamental step for the simulation of warm rain format...The initiation and intensity of warm rain are processes dominated by the evolution of cloud droplet spectra.To treat the cloud condensation process properly is a fundamental step for the simulation of warm rain formation.Double-moment bulk schemes with a limited number of prognostic variables cannot simulate the evolution of droplet spectra properly.A triple-moment bulk scheme,however,should overcome the problem of spurious cloud droplet spectrum broadening induced by double-moment schemes.To compare the effects of a newly developed triplemoment scheme with double-moment schemes on warm rain formation,the authors conducted WRF-LES numerical simulations to investigate the impacts of the two types of condensation scheme on rain initiation and intensity.In the early stage of raindrop formation,the simulation with the triple-moment scheme delays the raindrop initiation and produces droplet spectra with smaller average radii than those with the double-moment scheme.In the developing stage,the triple-moment scheme reduces the raindrop water content at the precipitation center.However,the further triple-moment scheme for raindrop is needed to simulate the development of warm rain accurately.展开更多
A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model ...A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model for a deep convection case.The simulation results were improved with the new scheme over the original Eulerian scheme.In the present study,the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO(Rain in Cumulus over the Ocean)campaign.The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS.Comparing the model simulation results with aircraft observation data,the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured.The LAS is robust and reliable for the simulation of rain embryo formation.展开更多
基金supported by the National Basic Research Program of China(973 Program)[Grant 2014CB441403]the National Natural Science Foundation of China [Grants41275147]+1 种基金the National Key Research and Development Program of China [2016YFC0209000]Ningxia scientific supporting program [Grants 2015KJHM31]
文摘The initiation and intensity of warm rain are processes dominated by the evolution of cloud droplet spectra.To treat the cloud condensation process properly is a fundamental step for the simulation of warm rain formation.Double-moment bulk schemes with a limited number of prognostic variables cannot simulate the evolution of droplet spectra properly.A triple-moment bulk scheme,however,should overcome the problem of spurious cloud droplet spectrum broadening induced by double-moment schemes.To compare the effects of a newly developed triplemoment scheme with double-moment schemes on warm rain formation,the authors conducted WRF-LES numerical simulations to investigate the impacts of the two types of condensation scheme on rain initiation and intensity.In the early stage of raindrop formation,the simulation with the triple-moment scheme delays the raindrop initiation and produces droplet spectra with smaller average radii than those with the double-moment scheme.In the developing stage,the triple-moment scheme reduces the raindrop water content at the precipitation center.However,the further triple-moment scheme for raindrop is needed to simulate the development of warm rain accurately.
基金This research was funded by the National Natural Science Foundation of China[grant number 41705119]a basic research project[grant number xxx0109-301].
文摘A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model for a deep convection case.The simulation results were improved with the new scheme over the original Eulerian scheme.In the present study,the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO(Rain in Cumulus over the Ocean)campaign.The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS.Comparing the model simulation results with aircraft observation data,the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured.The LAS is robust and reliable for the simulation of rain embryo formation.