The quantum theory of dark soliton propagation in fibers is studied based on the linearization approximation. Then the uncertainties in photon number, phase, position (time) and momentum of quantized dark solitons a...The quantum theory of dark soliton propagation in fibers is studied based on the linearization approximation. Then the uncertainties in photon number, phase, position (time) and momentum of quantized dark solitons are calculated. Finally, the squeezing of the dark soliton is investigated by using homodyne detection and compared with bright soliton case.展开更多
The dark current of In_(0.47) Ga_(0.53) As/InP heterojunction photodiodes (HPDs) was analysed. We found that there exists a new dark current component──deep level-assisted tunnelling current.DLTS was used to measure...The dark current of In_(0.47) Ga_(0.53) As/InP heterojunction photodiodes (HPDs) was analysed. We found that there exists a new dark current component──deep level-assisted tunnelling current.DLTS was used to measure the In_(0.47)Ga_(0.53)As/InP HPDs. An electronic trap which has a thermal activation energy of O.44 eV, level concentration of 3.10×10 ̄(13)cm ̄(-3) and electronic capture cross section of 1.72×10 ̄(12)cm ̄2 has been found.It's existence results in the new tunnelling current.展开更多
文摘The quantum theory of dark soliton propagation in fibers is studied based on the linearization approximation. Then the uncertainties in photon number, phase, position (time) and momentum of quantized dark solitons are calculated. Finally, the squeezing of the dark soliton is investigated by using homodyne detection and compared with bright soliton case.
文摘The dark current of In_(0.47) Ga_(0.53) As/InP heterojunction photodiodes (HPDs) was analysed. We found that there exists a new dark current component──deep level-assisted tunnelling current.DLTS was used to measure the In_(0.47)Ga_(0.53)As/InP HPDs. An electronic trap which has a thermal activation energy of O.44 eV, level concentration of 3.10×10 ̄(13)cm ̄(-3) and electronic capture cross section of 1.72×10 ̄(12)cm ̄2 has been found.It's existence results in the new tunnelling current.