Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantu...Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantum model.However, in the original model, all gauge gravitons are massless. We want to ask whether there exist massive gravitonsin Nature. In this paper, we will propose a gauge model with massive gravitons. The mass term of gravitational gaugefield is introduced into the theory without violating the strict local gravitational gauge symmetry. Massive gravitons canbe considered to be possible origin of dark energy and dark matter in the Universe.展开更多
We propose to study the accelerating expansion of the universe in the double complex symmetric gravitational theory (DCSGT). The universe we live in is taken as the real part of the whole spacetime MC^4(J), which ...We propose to study the accelerating expansion of the universe in the double complex symmetric gravitational theory (DCSGT). The universe we live in is taken as the real part of the whole spacetime MC^4(J), which is double complex. By introducing the spatially flat FRW metric, not only the double Friedmann equations but also the two constraint conditions py = 0 and J^2 = 1 are obtained. Farthermore, using parametric DL(z) ansatz, we reconstruct the ω/(z) and V(Ф) for dark energy from real observational data. We find that in the two cases of J = i, pJ = 0, and J = ε, pJ≠0, the corresponding equations of state ω'(z) remain close to -1 at present (z = 0) and change from below -1 to above -1. The results illustrate that the whole spacetime, i.e. the double complex spacetime MC^4(J), may be either ordinary complex (J = i, pJ = 0) or hyperbolic complex (J = ε, pJ≠ 0). And the fate of the universe would be Big Rip in the future.展开更多
In Verlinde's entropic force scenario of gravity, Newton's laws and Einstein equations can be obtained from the first principles and general assumptions. However, the equipartition law of energy is invalid at very l...In Verlinde's entropic force scenario of gravity, Newton's laws and Einstein equations can be obtained from the first principles and general assumptions. However, the equipartition law of energy is invalid at very low temperatures. We show clearly that the threshold of the equipartition law of energy is related with horizon of the universe. Thus, a one-dimensional Debye (ODD) model in the direction of radius of the modified entropic force (MEF) may be suitable in description of the accelerated expanding universe. We present a Friedmann cosmic dynamical model in the ODD-MEF framework. We examine carefully constraints on the ODD-MEF model from the Union2 compilation of the Supernova Cosmology Project (SCP) collaboration, the data from the observation of the large-scale structure (LSS) and the cosmic microwave background (CMB), i.e. SNe Ia+LSS+CMB. The combined numerical analysis gives the best-fit value of the model parameters ( -10^-9 and Ωm0= 0.224, with 2 = Xmin= 591.156. The corresponding age of the universe agrees with the result of D. Spergel et al. [J.M. Bardeen, B. Carter, and S.W. Hawking, Commun. Math. Phys. 31 (1973) 161] at 95% confidence level. The numerical result also yields an accelerated expanding universe without invoking any kind of dark energy. Taking ζ(= 2πωD/ H0 ) as a running parameter associated with the structure scale r, we obtain a possible unified scenario of the asymptotic flatness of the radial velocity dispersion of spiral galaxies, the accelerated expanding universe and the Pioneer 10/11 anomaly in the entropic force framework of Verlinde.展开更多
Since there may exist dark matter particles ν and δ with mass - 10^-1 e V in the universe, the superstructures with a scale of 10^19 solar masses (large number A - 10^19) appeared during the era near and before th...Since there may exist dark matter particles ν and δ with mass - 10^-1 e V in the universe, the superstructures with a scale of 10^19 solar masses (large number A - 10^19) appeared during the era near and before the hydrogen recombination. Since there are superstructures in the universe, there may be no necessity for the existence of dark energy. For checking the superstructure in the universe by CMB anisotropy, we need to measure CMB angular power spectrum especially around ten degrees across the sky- in more details, While neutrino u is related to electroweak unification, the fourth stable elementary particle 6 may be related to strong-gravity unification, which suggests p + p^- → n + δ^- and that some new baryons appeared in the TeV region.展开更多
文摘Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantum model.However, in the original model, all gauge gravitons are massless. We want to ask whether there exist massive gravitonsin Nature. In this paper, we will propose a gauge model with massive gravitons. The mass term of gravitational gaugefield is introduced into the theory without violating the strict local gravitational gauge symmetry. Massive gravitons canbe considered to be possible origin of dark energy and dark matter in the Universe.
基金The project supported by National Natural Science Foundation of China under Grant No. 10573004
文摘We propose to study the accelerating expansion of the universe in the double complex symmetric gravitational theory (DCSGT). The universe we live in is taken as the real part of the whole spacetime MC^4(J), which is double complex. By introducing the spatially flat FRW metric, not only the double Friedmann equations but also the two constraint conditions py = 0 and J^2 = 1 are obtained. Farthermore, using parametric DL(z) ansatz, we reconstruct the ω/(z) and V(Ф) for dark energy from real observational data. We find that in the two cases of J = i, pJ = 0, and J = ε, pJ≠0, the corresponding equations of state ω'(z) remain close to -1 at present (z = 0) and change from below -1 to above -1. The results illustrate that the whole spacetime, i.e. the double complex spacetime MC^4(J), may be either ordinary complex (J = i, pJ = 0) or hyperbolic complex (J = ε, pJ≠ 0). And the fate of the universe would be Big Rip in the future.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10525522 and 10875129
文摘In Verlinde's entropic force scenario of gravity, Newton's laws and Einstein equations can be obtained from the first principles and general assumptions. However, the equipartition law of energy is invalid at very low temperatures. We show clearly that the threshold of the equipartition law of energy is related with horizon of the universe. Thus, a one-dimensional Debye (ODD) model in the direction of radius of the modified entropic force (MEF) may be suitable in description of the accelerated expanding universe. We present a Friedmann cosmic dynamical model in the ODD-MEF framework. We examine carefully constraints on the ODD-MEF model from the Union2 compilation of the Supernova Cosmology Project (SCP) collaboration, the data from the observation of the large-scale structure (LSS) and the cosmic microwave background (CMB), i.e. SNe Ia+LSS+CMB. The combined numerical analysis gives the best-fit value of the model parameters ( -10^-9 and Ωm0= 0.224, with 2 = Xmin= 591.156. The corresponding age of the universe agrees with the result of D. Spergel et al. [J.M. Bardeen, B. Carter, and S.W. Hawking, Commun. Math. Phys. 31 (1973) 161] at 95% confidence level. The numerical result also yields an accelerated expanding universe without invoking any kind of dark energy. Taking ζ(= 2πωD/ H0 ) as a running parameter associated with the structure scale r, we obtain a possible unified scenario of the asymptotic flatness of the radial velocity dispersion of spiral galaxies, the accelerated expanding universe and the Pioneer 10/11 anomaly in the entropic force framework of Verlinde.
文摘Since there may exist dark matter particles ν and δ with mass - 10^-1 e V in the universe, the superstructures with a scale of 10^19 solar masses (large number A - 10^19) appeared during the era near and before the hydrogen recombination. Since there are superstructures in the universe, there may be no necessity for the existence of dark energy. For checking the superstructure in the universe by CMB anisotropy, we need to measure CMB angular power spectrum especially around ten degrees across the sky- in more details, While neutrino u is related to electroweak unification, the fourth stable elementary particle 6 may be related to strong-gravity unification, which suggests p + p^- → n + δ^- and that some new baryons appeared in the TeV region.