期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于通道先验损失的无监督图像去雾算法
1
作者 张莉莉 《绵阳师范学院学报》 2022年第8期87-95,共9页
图像去雾是图像处理的一个关键步骤.基于学习的方法由于在收集清晰和模糊图像的固有限制,通常依赖于合成数据进行训练,且由室内图像和相应的深度信息构成.在处理室外场景时,可能会存在域偏移问题.提出了一种完全无监督的训练方法,通过... 图像去雾是图像处理的一个关键步骤.基于学习的方法由于在收集清晰和模糊图像的固有限制,通常依赖于合成数据进行训练,且由室内图像和相应的深度信息构成.在处理室外场景时,可能会存在域偏移问题.提出了一种完全无监督的训练方法,通过最小化暗通道先验能量函数来进行图像去雾.此外,只使用真实世界的室外图像进行训练,并通过直接最小化该能量函数来优化网络参数.实验结果表明该方法的性能与大规模监督方法相当,可见通过网络和学习过程,可以获得额外的正则化. 展开更多
关键词 图像去雾 无监督训练 通道先验损失 正则化
下载PDF
基于残差注意力和半监督学习的图像去雾算法 被引量:2
2
作者 孙曦 于莲芝 《电子科技》 2023年第9期50-57,共8页
基于训练合成图像的去雾算法往往不能在真实图像数据集上取得较好效果。针对泛化能力不理想等问题,文中提出了一种基于残差注意力机制的半监督学习网络用于单幅图像去雾算法。其主干网络由编码器和解码器构成,通过使用堆叠的残差注意力... 基于训练合成图像的去雾算法往往不能在真实图像数据集上取得较好效果。针对泛化能力不理想等问题,文中提出了一种基于残差注意力机制的半监督学习网络用于单幅图像去雾算法。其主干网络由编码器和解码器构成,通过使用堆叠的残差注意力模块调整不同尺度的特征权重,赋予重要特征更多权重。局部残差学习选择绕过薄雾区域,使模型关注有效信息。文中训练分为有监督学习和无监督学习两个分支,分别输入合成数据和真实数据,其中使用暗通道损失和全变分损失来约束无监督分支。实验结果表明,文中所提算法在合成数据集和真实数据集上均取得了较好的结果,图像的平均处理时间仅为0.01 s,在去雾效果和处理时间上实现了平衡。 展开更多
关键词 图像去雾 编码解码结构 半监督框架 注意力机制 残差连接 SOS增强策略 暗通道损失 SSIM损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部