In this paper, time and space distribution regularity of meso-scale heavy rains in five selected typhoons which landed at Fujian from 1996 to 1998 has been analyzed. Besides, with hourly digitized satellite infrared i...In this paper, time and space distribution regularity of meso-scale heavy rains in five selected typhoons which landed at Fujian from 1996 to 1998 has been analyzed. Besides, with hourly digitized satellite infrared imagery, the features of the mesoscale are revealed for the genesis and evolution of mesoscale convective systems in typhoons. It indicates that the intensity of mesoscale storms is closely connected with the temperature and the area of the coldest cloud cluster. The heavy rainfall usually emerges on the eastern side of the mesoscale convective cloud clusters, where the cloud mass is developing and with a dense gradient and big curvature of isoline of the cloud top temperature.展开更多
Aerosol optical depth (AOD) is the most basic paxalneter that describes the optical properties of atmospheric aerosols, and it can be used to indicate aerosol content. In this study, we assimilated AOD data from the...Aerosol optical depth (AOD) is the most basic paxalneter that describes the optical properties of atmospheric aerosols, and it can be used to indicate aerosol content. In this study, we assimilated AOD data from the Fengyun-3A (FY-3A) and MODIS meteorological satellite using the Gridpoint Statistical Interpolation three-dimensional variational data assimilation system. Experiments were conducted for a dust storm over East Asia in April 2011. Each 0600 UTC analysis initialized a 24-h Weather Research and Forecasting with Chemistry model forecast. The results generally showed that the assimilation of satellite AOD observational data can significantly improve model aerosol mass prediction skills. The AOD distribution of the analysis field was closer to the observations of the satellite after assimilation of satellite AOD data. In addition, the analysis resulting from the experiment assimilating both FY-3A/MERSI (Medium-resolution Spectral Imager) AOD data and MODIS AOD data had closer agreement with the ground-based values than the individual assimilation of the two datasets for the dust storm over East Asia. These results suggest that the Chinese FY-3A satellite aerosol products can be effectively applied to numerical models and dust weather analysis.展开更多
文摘In this paper, time and space distribution regularity of meso-scale heavy rains in five selected typhoons which landed at Fujian from 1996 to 1998 has been analyzed. Besides, with hourly digitized satellite infrared imagery, the features of the mesoscale are revealed for the genesis and evolution of mesoscale convective systems in typhoons. It indicates that the intensity of mesoscale storms is closely connected with the temperature and the area of the coldest cloud cluster. The heavy rainfall usually emerges on the eastern side of the mesoscale convective cloud clusters, where the cloud mass is developing and with a dense gradient and big curvature of isoline of the cloud top temperature.
基金supported by the National Key Research and Development Program of China (Grant Nos.2017YFC1502100 and 2016YFA0602302)the Natural Science Foundation of Jiangsu Province (Grant Nos.BK20160954 and BK20170940)+3 种基金the Beijige Funding from Jiangsu Research Institute of Meteorological Science (Grant Nos.BJG201510 and BJG201604)the Startup Foundation for Introducing Talent of NUIST (Grant Nos.2016r27,2016r043 and 2017r058)a project for data application of Fengyun3 meteorological satellite [FY-3(02)UDS-1.1.2]the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Aerosol optical depth (AOD) is the most basic paxalneter that describes the optical properties of atmospheric aerosols, and it can be used to indicate aerosol content. In this study, we assimilated AOD data from the Fengyun-3A (FY-3A) and MODIS meteorological satellite using the Gridpoint Statistical Interpolation three-dimensional variational data assimilation system. Experiments were conducted for a dust storm over East Asia in April 2011. Each 0600 UTC analysis initialized a 24-h Weather Research and Forecasting with Chemistry model forecast. The results generally showed that the assimilation of satellite AOD observational data can significantly improve model aerosol mass prediction skills. The AOD distribution of the analysis field was closer to the observations of the satellite after assimilation of satellite AOD data. In addition, the analysis resulting from the experiment assimilating both FY-3A/MERSI (Medium-resolution Spectral Imager) AOD data and MODIS AOD data had closer agreement with the ground-based values than the individual assimilation of the two datasets for the dust storm over East Asia. These results suggest that the Chinese FY-3A satellite aerosol products can be effectively applied to numerical models and dust weather analysis.