期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于二分K-means聚类的曲率分级点云数据精简优化算法研究 被引量:12
1
作者 李佩佩 崔凤英 《电子测量技术》 北大核心 2022年第4期66-71,共6页
针对单一精简算法无法精确保留模型特征信息、易造成点云表面孔洞等问题,提出了一种基于二分K-means聚类的曲率分级优化精简算法。首先采用最小二乘法对邻域进行曲面拟合,计算曲率值,依据曲率值划分显著特征区与非显著特征区,其次采用二... 针对单一精简算法无法精确保留模型特征信息、易造成点云表面孔洞等问题,提出了一种基于二分K-means聚类的曲率分级优化精简算法。首先采用最小二乘法对邻域进行曲面拟合,计算曲率值,依据曲率值划分显著特征区与非显著特征区,其次采用二分K-means聚类划分非显著特征区,依据子簇的曲率阈值筛选保留具有特征重要性的亚特征点,最后合并更新显著特征区的数据集和亚特征点,得到简化结果。通过仿真实验,从算法运行速度和信息熵两方面与空间包围盒法、曲率精简算法进行对比分析,结果表明,该算法在精简质量上优于其他两种算法,在点云数据重建方面具有一定的应用价值。 展开更多
关键词 点云数据 二分K-means聚类 曲率简化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部