A review on severe plastic deformation(SPD) technique of equal channel angular pressing(ECAP) process of commercially pure titanium(CP-Ti) alloys was presented with a major emphasize on the influence of ECAP par...A review on severe plastic deformation(SPD) technique of equal channel angular pressing(ECAP) process of commercially pure titanium(CP-Ti) alloys was presented with a major emphasize on the influence of ECAP parameters that include channel and curvature angles, processing route, temperature of operation, pressing speed, internal heating, number of pass through the die and back pressure. Various ECAP characteristics such as microstructure, strain inhomogeneity and mechanical properties are considered to achieve the maximum homogeneity, equilibrium grain refinement and mechanical improvement of CP-Ti. Investigations show that a pressing speed of 1-3 mm/s at 450 °C with route BC along with channel and curvature angles of 90° and 20° respectively with backpressure can lead to the most homogeneous ultrafine microstructure.展开更多
Objective] The main biological effects of leaf rol ing of rice was studied to provide the theoretical basis for the application of RL (t) in the breeding of the rice. [Method] A rice mutant with adaxial y-rol ed lea...Objective] The main biological effects of leaf rol ing of rice was studied to provide the theoretical basis for the application of RL (t) in the breeding of the rice. [Method] A rice mutant with adaxial y-rol ed leaf was found in breeding, temporarily named as RL (t). The differences were researched in which light interception struc-ture, light transmission photosynthetic efficiency and cel ular structure comparison between RL (t) and its sister lines that had flat leaf. [Result] Both leaf rol ing index and leaf erecting index of RL (t) were higher than those in 0731-3-1-1B. However, its basic leaf angle and leaf drooping angle were significantly lower than those in 0731-3-1-1B in upper three leaves, which caused a great raise in the photosynthetic rate on account of the light transmittance of RL (t)’s population were significantly higher than that of 0731-3-1-1B especial y the upper and middle part. The stomata conductance and the intercel ular CO2 concentration of the upper three leaves and transpiration rate of the flag and the second leaf were also significantly higher than that of 0731-3-1-1B. The bul iform cel s became smal er, leading to the rol ing up of leaves. [Conclusion] The study provided a theoretical basis for the principle of high-yielding breeding with the application of the adaxial y-rol ed leaf mutant in rice.展开更多
Yellow light-emitting diodes(LEDs) are widely utilized in high-quality lighting, light communication,indicator lamps, etc. Owing to their outstanding material properties and device performance, the metal halide perovs...Yellow light-emitting diodes(LEDs) are widely utilized in high-quality lighting, light communication,indicator lamps, etc. Owing to their outstanding material properties and device performance, the metal halide perovskites have demonstrated a significant potential for LED applications. However, the performance of the yellow perovskite LEDs(PeLEDs) is inferior to that of their green and red counterparts, with the maximum external quantum efficiency(EQE) limited to ~3.1%. Further, a majority of the yellow PeLEDs are fabricated using the spin-coating methods. The current study reports the development of the yellow CsPbBr_(2)I PeLEDs based on an all-vacuum deposition approach, which has been widely employed in the commercial organic LEDs(OLEDs). By controlling the co-evaporation rate of CsI and PbBr;, the growth kinetics of the perovskite layer are regulated to achieve a small grain size of~31.8 nm. Consequently, an improved radiative recombination rate(8.04 × 10^(-9)cm^(3)/s) is obtained owing to the spatial confinement effect. The PeLEDs based on the optimal perovskite film demonstrate the yellow electroluminescence(574 nm) with a maximum EQE of ~3.7% and luminance of~16,200 cd/m^(2), thus, representing one of the most efficient and bright yellow PeLEDs. Overall, this study provides a useful guideline for realizing the efficient PeLEDs based on the thermal evaporation strategy and highlights the potential of PeLED as an efficient and bright yellow light source.展开更多
基金Project(DMR-0968825)support by National Science Foundation Through Grant
文摘A review on severe plastic deformation(SPD) technique of equal channel angular pressing(ECAP) process of commercially pure titanium(CP-Ti) alloys was presented with a major emphasize on the influence of ECAP parameters that include channel and curvature angles, processing route, temperature of operation, pressing speed, internal heating, number of pass through the die and back pressure. Various ECAP characteristics such as microstructure, strain inhomogeneity and mechanical properties are considered to achieve the maximum homogeneity, equilibrium grain refinement and mechanical improvement of CP-Ti. Investigations show that a pressing speed of 1-3 mm/s at 450 °C with route BC along with channel and curvature angles of 90° and 20° respectively with backpressure can lead to the most homogeneous ultrafine microstructure.
文摘Objective] The main biological effects of leaf rol ing of rice was studied to provide the theoretical basis for the application of RL (t) in the breeding of the rice. [Method] A rice mutant with adaxial y-rol ed leaf was found in breeding, temporarily named as RL (t). The differences were researched in which light interception struc-ture, light transmission photosynthetic efficiency and cel ular structure comparison between RL (t) and its sister lines that had flat leaf. [Result] Both leaf rol ing index and leaf erecting index of RL (t) were higher than those in 0731-3-1-1B. However, its basic leaf angle and leaf drooping angle were significantly lower than those in 0731-3-1-1B in upper three leaves, which caused a great raise in the photosynthetic rate on account of the light transmittance of RL (t)’s population were significantly higher than that of 0731-3-1-1B especial y the upper and middle part. The stomata conductance and the intercel ular CO2 concentration of the upper three leaves and transpiration rate of the flag and the second leaf were also significantly higher than that of 0731-3-1-1B. The bul iform cel s became smal er, leading to the rol ing up of leaves. [Conclusion] The study provided a theoretical basis for the principle of high-yielding breeding with the application of the adaxial y-rol ed leaf mutant in rice.
基金supported by the National Natural Science Foundation of China(62050039 61725401 5171101030 51761145048 62004075 62005089 and 51902113)the National Key R&D Program of China(2016YFA0204000 and 2016YFB0201204)+2 种基金the Fundamental Research Funds for the Central Universities(HUST: 2019421JYCXJJ004)the Fund for Innovative Research Groups of the Natural Science Foundation of Hubei Province(2020CFA034)the Graduates’ Innovation Fund of Huazhong University of Science and Technology(HUST)(2021yjscxcy036)。
文摘Yellow light-emitting diodes(LEDs) are widely utilized in high-quality lighting, light communication,indicator lamps, etc. Owing to their outstanding material properties and device performance, the metal halide perovskites have demonstrated a significant potential for LED applications. However, the performance of the yellow perovskite LEDs(PeLEDs) is inferior to that of their green and red counterparts, with the maximum external quantum efficiency(EQE) limited to ~3.1%. Further, a majority of the yellow PeLEDs are fabricated using the spin-coating methods. The current study reports the development of the yellow CsPbBr_(2)I PeLEDs based on an all-vacuum deposition approach, which has been widely employed in the commercial organic LEDs(OLEDs). By controlling the co-evaporation rate of CsI and PbBr;, the growth kinetics of the perovskite layer are regulated to achieve a small grain size of~31.8 nm. Consequently, an improved radiative recombination rate(8.04 × 10^(-9)cm^(3)/s) is obtained owing to the spatial confinement effect. The PeLEDs based on the optimal perovskite film demonstrate the yellow electroluminescence(574 nm) with a maximum EQE of ~3.7% and luminance of~16,200 cd/m^(2), thus, representing one of the most efficient and bright yellow PeLEDs. Overall, this study provides a useful guideline for realizing the efficient PeLEDs based on the thermal evaporation strategy and highlights the potential of PeLED as an efficient and bright yellow light source.