To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis o...To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis of the energy conservation law as well as considering the effect of the boundary friction.The formula is validated through the finite element analysis and static load tests.On this basis the effect of the boundary friction on the bearing capacity is researched. Then the dynamic performance of disc-spring vibration isolators is studied by dynamic tests.The experimental results indicate that the boundary friction can promise a larger damping with a ratio of 0.23 for disc-spring vibration isolators.Compared with the loading frequency the loading amplitude has a greater impact on the energy consumption dynamic stiffness and damping of vibration isolators.This research can provide valuable information for the design of disc-spring vibration isolators.展开更多
This paper proposes an empirical formula to estimate the shear strength of hydraulic expansion rockbolts.The field experimental results were obtained from eleven pullout tests to evaluate the results computed by the p...This paper proposes an empirical formula to estimate the shear strength of hydraulic expansion rockbolts.The field experimental results were obtained from eleven pullout tests to evaluate the results computed by the proposed formula.It was found that shear resistance of hydraulic expansion rockbolts significantly depends on the uniaxial compressive strength and elastic modulus of rock,with high correlation coefficients of 0.7651 and0.8587,respectively.The developed formula enables estimation of the maximum pullout load in an analytical process without pullout tests in the field.Conversely,due to the poor interlocking at the initial pullout load,the measured displacements were higher than the estimated ones.To reduce the interlocking effects between bolt and rock,we recommend preloading of 29.4 kN.Preload allows reducing the distance between the measured and estimated displacement and making two load-displacement curves practically identical with marginal differences of 1.1 to 1.5 mm at the maximum pullout load.展开更多
With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of...With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.展开更多
基金Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2008030)
文摘To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis of the energy conservation law as well as considering the effect of the boundary friction.The formula is validated through the finite element analysis and static load tests.On this basis the effect of the boundary friction on the bearing capacity is researched. Then the dynamic performance of disc-spring vibration isolators is studied by dynamic tests.The experimental results indicate that the boundary friction can promise a larger damping with a ratio of 0.23 for disc-spring vibration isolators.Compared with the loading frequency the loading amplitude has a greater impact on the energy consumption dynamic stiffness and damping of vibration isolators.This research can provide valuable information for the design of disc-spring vibration isolators.
基金supported by 2016 Hongik University Research Fund and the Convergence R&D program of MSIP/NST[Convergence Research-14-2-ETRI,Development of Internet of Things(IoT)-based Urban Underground Utility Monitoring and Management System]
文摘This paper proposes an empirical formula to estimate the shear strength of hydraulic expansion rockbolts.The field experimental results were obtained from eleven pullout tests to evaluate the results computed by the proposed formula.It was found that shear resistance of hydraulic expansion rockbolts significantly depends on the uniaxial compressive strength and elastic modulus of rock,with high correlation coefficients of 0.7651 and0.8587,respectively.The developed formula enables estimation of the maximum pullout load in an analytical process without pullout tests in the field.Conversely,due to the poor interlocking at the initial pullout load,the measured displacements were higher than the estimated ones.To reduce the interlocking effects between bolt and rock,we recommend preloading of 29.4 kN.Preload allows reducing the distance between the measured and estimated displacement and making two load-displacement curves practically identical with marginal differences of 1.1 to 1.5 mm at the maximum pullout load.
基金Project(52068004)supported by the National Natural Science Foundation of ChinaProject(2018JJA160134)supported by the Natural Science Foundation of Guangxi Province,ChinaProject(AB19245018)supported by Key Research Projects of Guangxi Province,China。
文摘With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.