The effects of relative humidity (RH) on a printed circuit board finished with electroless nickel immersion gold (PCB-ENIG) under an adsorbed thin electrolyte layer (ATEL) were investigated in situ via the measurement...The effects of relative humidity (RH) on a printed circuit board finished with electroless nickel immersion gold (PCB-ENIG) under an adsorbed thin electrolyte layer (ATEL) were investigated in situ via the measurement of cathodic polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to clearly elaborate the corrosion behavior of PCB-ENIG in the atmospheric environment. Results indicated that the cathodic process of PCB-ENIG under ATEL was dominated by the reduction of dissolved oxygen, corrosion products, and H2O. The cathodic current density of PCB-ENIG increased progressively with increasing RH. Moreover, its cathodic current density in the solution was greater than that under ATEL. This result demonstrated that the diffusion process was not the controlling step during the limiting reduction of cathodic oxygen. When the polarization potentials were located in a more negative region, the cathodic polarization current density gradually decreased under 75% and 85% RH. Notably, the anodic process became the controlling step in the extremely thin liquid film during the remainder of the experiment.展开更多
The behavior of a thin curved hyperelastic film bonded to a fixed substrate is described by an energy composed of a nonlinearly hyperelastic energy term and a debonding interracial energy term. The author computes the...The behavior of a thin curved hyperelastic film bonded to a fixed substrate is described by an energy composed of a nonlinearly hyperelastic energy term and a debonding interracial energy term. The author computes the Г-limit of this energy under a noninterpenetration constraint that prohibits penetration of the film into the substrate without excluding contact between them.展开更多
The buckling design of micro-films has various potential applications to engineering.The substrate prestrain,interconnector buckling amplitude and critical strain are important parameters for the buckling design.In th...The buckling design of micro-films has various potential applications to engineering.The substrate prestrain,interconnector buckling amplitude and critical strain are important parameters for the buckling design.In the presented analysis,the buckled film shape was described approximately by a trigonometric function and the buckled film amplitude was obtained by minimizing the total strain energy.However,this method only generates the first-order approximate solution for the nonlinear buckling.In the present paper,an asymptotic analysis based on the rigorous nonlinear differential equation for the buckled micro-film deformations is proposed to obtain more accurate relationship of the buckling amplitude and critical strain to prestrain.The obtained results reveal the nonlinear relation and are significant to accurate buckling design of micro-films.展开更多
Wrinkling and buckling of nano-films on the compliant substrate are always induced due to thermal deformation mismatch.This paper proposes effective means to control the surface wrinkling of thin film on the compliant...Wrinkling and buckling of nano-films on the compliant substrate are always induced due to thermal deformation mismatch.This paper proposes effective means to control the surface wrinkling of thin film on the compliant substrate,which exploits the curvatures of the curve cracks designed on the stiff film.The procedures of the method are summarized as:1)curve patterns are fabricated on the surface of PDMS(Polydimethylsiloxane)substrate and then the aluminum film with the thickness of several hundred nano-meters is deposited on the substrate;2)the curve patterns are transferred onto the aluminum film and lead to cracking of the film along the curves.The cracking redistributes the stress in the compressed film on the substrate;3)on the concave side of the curve,the wrinkling of the film surface is suppressed to be identified as shielding effect and on the convex side the wrinkling of the film surface is induced to be identified as inductive effect.The shielding and inductive effects make the dis-ordered wrinkling and buckling controllable.This phenomenon provides a potential application in the fabrication of flexible electronic devices.展开更多
基金Project(51271032)supported by the National Natural Science Foundation of ChinaProject(2014CB643300)supported by the National Basic Research Program of ChinaProject supported by the National Environmental Corrosion Platform,China
文摘The effects of relative humidity (RH) on a printed circuit board finished with electroless nickel immersion gold (PCB-ENIG) under an adsorbed thin electrolyte layer (ATEL) were investigated in situ via the measurement of cathodic polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to clearly elaborate the corrosion behavior of PCB-ENIG in the atmospheric environment. Results indicated that the cathodic process of PCB-ENIG under ATEL was dominated by the reduction of dissolved oxygen, corrosion products, and H2O. The cathodic current density of PCB-ENIG increased progressively with increasing RH. Moreover, its cathodic current density in the solution was greater than that under ATEL. This result demonstrated that the diffusion process was not the controlling step during the limiting reduction of cathodic oxygen. When the polarization potentials were located in a more negative region, the cathodic polarization current density gradually decreased under 75% and 85% RH. Notably, the anodic process became the controlling step in the extremely thin liquid film during the remainder of the experiment.
文摘The behavior of a thin curved hyperelastic film bonded to a fixed substrate is described by an energy composed of a nonlinearly hyperelastic energy term and a debonding interracial energy term. The author computes the Г-limit of this energy under a noninterpenetration constraint that prohibits penetration of the film into the substrate without excluding contact between them.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11002077 and 11072215)
文摘The buckling design of micro-films has various potential applications to engineering.The substrate prestrain,interconnector buckling amplitude and critical strain are important parameters for the buckling design.In the presented analysis,the buckled film shape was described approximately by a trigonometric function and the buckled film amplitude was obtained by minimizing the total strain energy.However,this method only generates the first-order approximate solution for the nonlinear buckling.In the present paper,an asymptotic analysis based on the rigorous nonlinear differential equation for the buckled micro-film deformations is proposed to obtain more accurate relationship of the buckling amplitude and critical strain to prestrain.The obtained results reveal the nonlinear relation and are significant to accurate buckling design of micro-films.
基金supported by the National Basic Research Program of China(Grant Nos.2010CB631005 and 2011CB606105)the National Natural Science Foundation of China(Grant Nos.11232008,91216301,11072125 and 11272175)Tsinghua University Initiative Scientific Research Program
文摘Wrinkling and buckling of nano-films on the compliant substrate are always induced due to thermal deformation mismatch.This paper proposes effective means to control the surface wrinkling of thin film on the compliant substrate,which exploits the curvatures of the curve cracks designed on the stiff film.The procedures of the method are summarized as:1)curve patterns are fabricated on the surface of PDMS(Polydimethylsiloxane)substrate and then the aluminum film with the thickness of several hundred nano-meters is deposited on the substrate;2)the curve patterns are transferred onto the aluminum film and lead to cracking of the film along the curves.The cracking redistributes the stress in the compressed film on the substrate;3)on the concave side of the curve,the wrinkling of the film surface is suppressed to be identified as shielding effect and on the convex side the wrinkling of the film surface is induced to be identified as inductive effect.The shielding and inductive effects make the dis-ordered wrinkling and buckling controllable.This phenomenon provides a potential application in the fabrication of flexible electronic devices.