Field cores from typical cracking locations were tested by the semi-circular bending test and the digital image correlation method to evaluate the anti-fatigue performance of different asphalt pavements. Test results ...Field cores from typical cracking locations were tested by the semi-circular bending test and the digital image correlation method to evaluate the anti-fatigue performance of different asphalt pavements. Test results were analyzed by different fatigue models. Causes of fatigue cracking for different pavement sections were determined by extraction and sieving test results. It is found that the ranking (from high to low) in terms of the anti-fatigue performance for field cores is the crumb rubber modified asphalt mixture, densegraded modified asphalt mixture, continuous graded asphalt treated base, gap-graded stone asphalt concrete, and half open-graded asphalt macadam. Compared with the half opengraded asphalt macadam, the fatigue life of the crumb rubber modified asphalt mixture improves by 2. 0 to 3. 8 times. Fatigue lives of different mixtures and distress ratios of actual pavements can be accurately predicted by the dissipated energy density ratio. Causes of fatigue cracking vary with mixture types.展开更多
With the rapid rising of heat flux and reduction of heat dissipating space of microelectronic devises, flattened sintered heat pipe has become an ideal conducting element of use in the electronic cooling field. A manu...With the rapid rising of heat flux and reduction of heat dissipating space of microelectronic devises, flattened sintered heat pipe has become an ideal conducting element of use in the electronic cooling field. A manufacturing technology named phase change flattening process is presented to fabricate the flattened grooved-sintered wick heat pipe (GSHP for short). Deformation geometry of flattened GSHP and the elasto-plastic deformation of flattening process are analyzed theoretically and verified by experiments. The results show that the vapor pressure inside sintered heat pipe during flattening process is determined by the saturated vapor pressure equation; the width and vapor area of flattened heat pipe change greatly as the flattening proceeds; the maximum equivalent strain distributes at the interface between wick and vapor in the fiat section; the buckling phenomenon can be well eliminated when the flattening temperature reaches 480 K; phase change flattening punch load increases with flattening temperature and displacement.展开更多
基金The National Natural Science Foundation of China(No.51308303)the Natural Science Foundation of Jiangsu Province(No.BK20130980)+1 种基金Qing Lan Project,the Practice Innovation Training Program Projects for the Jiangsu College Students(No.201410298024Z)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.SJLX15_0418)
文摘Field cores from typical cracking locations were tested by the semi-circular bending test and the digital image correlation method to evaluate the anti-fatigue performance of different asphalt pavements. Test results were analyzed by different fatigue models. Causes of fatigue cracking for different pavement sections were determined by extraction and sieving test results. It is found that the ranking (from high to low) in terms of the anti-fatigue performance for field cores is the crumb rubber modified asphalt mixture, densegraded modified asphalt mixture, continuous graded asphalt treated base, gap-graded stone asphalt concrete, and half open-graded asphalt macadam. Compared with the half opengraded asphalt macadam, the fatigue life of the crumb rubber modified asphalt mixture improves by 2. 0 to 3. 8 times. Fatigue lives of different mixtures and distress ratios of actual pavements can be accurately predicted by the dissipated energy density ratio. Causes of fatigue cracking vary with mixture types.
基金Project(50905119)supported by the National Natural Science Foundation of ChinaProject(2012M510205)supported by China Postdoctoral Science Foundation+1 种基金Project(PEMT1206)supported by the Open Foundation of Guangdong Province Key Laboratory of Precision Equipment and Manufacturing Technology,ChinaProject(S2012040007715)supported by Natural Science Foundation of Guangdong Province,China
文摘With the rapid rising of heat flux and reduction of heat dissipating space of microelectronic devises, flattened sintered heat pipe has become an ideal conducting element of use in the electronic cooling field. A manufacturing technology named phase change flattening process is presented to fabricate the flattened grooved-sintered wick heat pipe (GSHP for short). Deformation geometry of flattened GSHP and the elasto-plastic deformation of flattening process are analyzed theoretically and verified by experiments. The results show that the vapor pressure inside sintered heat pipe during flattening process is determined by the saturated vapor pressure equation; the width and vapor area of flattened heat pipe change greatly as the flattening proceeds; the maximum equivalent strain distributes at the interface between wick and vapor in the fiat section; the buckling phenomenon can be well eliminated when the flattening temperature reaches 480 K; phase change flattening punch load increases with flattening temperature and displacement.