The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stif...The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stiffness of joint system, which is neither total pin assumption nor perfect fix condition, is very important to apply to the real single layer space one. Therefore, the purpose of this work was to investigate the buckling behavior of single layer space structure, using the development of the upgraded stiffness matrix for the joint rigidity. To derive tangential stiffness matrix, a displacement function was assumed using translational and rotational displacement at the node. The geometrical nonlinear analysis was simulated not only with perfect model but also with imperfect one. As a result, the one and two free nodal numerical models were investigated using derived stiffness matrix. It was figured out that the buckling load increases in proportion to joint rigidity with rise-span ratio. The stability of numerical model is very sensitive with the initial imperfection, responding of bifurcation in the structure.展开更多
Spinning gait is valuable for quadruped robot,which can be used to avoid obstacles quickly for robot walking in unstructured environment. A kind of bionic flexible body is presented for quadruped robot to perform the ...Spinning gait is valuable for quadruped robot,which can be used to avoid obstacles quickly for robot walking in unstructured environment. A kind of bionic flexible body is presented for quadruped robot to perform the spinning gait. The spinning gait can be achieved by coordinated movement of body laterally bending and legs swing,which can improve the mobility of robot walking in the unstructured environments. The coordinated movement relationship between the body and the leg mechanism is presented. The stability of quadruped robot with spinning gait is analyzed based on the center of gravity( COG) projection method. The effect of different body bending angle on the stability of quadruped robot with spinning gait is mainly studied. For the quadruped robot walking with spinning gait,during one spinning gait cycle,the supporting polygon and the trajectory of COG projection point under different body bending angle are calculated. Finally,the stability margin of quadruped robot with spinning gait under different body bending angle is determined,which can be used to evaluate reasonableness of spinning gait parameters.展开更多
Concrete Filled FRP (Reinforced Polymeric Plastic) Tubes (CFFT) and Reinforced Concrete Filled FRP Tubes (RCFFT) are known to have the capability to enhance structural performance in terms of structural stabilit...Concrete Filled FRP (Reinforced Polymeric Plastic) Tubes (CFFT) and Reinforced Concrete Filled FRP Tubes (RCFFT) are known to have the capability to enhance structural performance in terms of structural stability, ductility, as well as chemical resistance when compared with conventional concrete members. In this study, the authors evaluate the structural performance of the CFFT and the RCFFT through flexural tests for the purpose of applying the members as flexural ones. Moreover, the compressive behavior of the CFFT and the RCFFT members was investigated to examine their confinement effects. Based on the experimental and analytical results of the compressive behavior of the members, equations for estimating the ultimate compressive strengths of the CFFT and the RCFFT were proposed. In addition, the degree of improvement on the flexural performance of the RCFFT member strengthened by the FRP was analyzed from the flexural tests.展开更多
This study presents and verifies a new idea for constructing a rotary traveling wave ultrasonic motor (USM) that uses the radial bending mode of a ring. In the new design, 20 trapezoid cross section slots are cut sy...This study presents and verifies a new idea for constructing a rotary traveling wave ultrasonic motor (USM) that uses the radial bending mode of a ring. In the new design, 20 trapezoid cross section slots are cut symmetrically in the outer surface of a thick duralumin alloy ring, where 20 PZT stacks are nested. In each slot, two wedging blocks are set between the PZT stack and the two sides of the slot respectively to apply preloading on the PZT ceramics. Two radial bending modes of the stator that have a phase difference of a quarter wavelength on space are generated by using the d33 operating mode of the PZT elements, and then a flexural traveling wave is formed by the superimposing of two standing waves whose amplitudes are equal and phases are different by 90~ temporally. Two conical rotors are pressed to each end of the ring type stator by a coiled spring. The finite element method (FEM) simulation is developed to validate the feasibility of the proposed motor. The maximal speed and torque of the prototype are tested to be 126 r/rain and 0.8 N'm, respectively.展开更多
基金Project(12 High-tech Urban C11) supported by High-tech Urban Development Program of Ministry of Land,Transport and Maritime Affairs,Korea
文摘The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stiffness of joint system, which is neither total pin assumption nor perfect fix condition, is very important to apply to the real single layer space one. Therefore, the purpose of this work was to investigate the buckling behavior of single layer space structure, using the development of the upgraded stiffness matrix for the joint rigidity. To derive tangential stiffness matrix, a displacement function was assumed using translational and rotational displacement at the node. The geometrical nonlinear analysis was simulated not only with perfect model but also with imperfect one. As a result, the one and two free nodal numerical models were investigated using derived stiffness matrix. It was figured out that the buckling load increases in proportion to joint rigidity with rise-span ratio. The stability of numerical model is very sensitive with the initial imperfection, responding of bifurcation in the structure.
基金Supported by the National Natural Science Foundation of China(No.51375289)Shanghai Municipal National Natural Science Foundation of China(No.13ZR1415500)Innovation Fund of Shanghai Education Commission(No.13YZ020)
文摘Spinning gait is valuable for quadruped robot,which can be used to avoid obstacles quickly for robot walking in unstructured environment. A kind of bionic flexible body is presented for quadruped robot to perform the spinning gait. The spinning gait can be achieved by coordinated movement of body laterally bending and legs swing,which can improve the mobility of robot walking in the unstructured environments. The coordinated movement relationship between the body and the leg mechanism is presented. The stability of quadruped robot with spinning gait is analyzed based on the center of gravity( COG) projection method. The effect of different body bending angle on the stability of quadruped robot with spinning gait is mainly studied. For the quadruped robot walking with spinning gait,during one spinning gait cycle,the supporting polygon and the trajectory of COG projection point under different body bending angle are calculated. Finally,the stability margin of quadruped robot with spinning gait under different body bending angle is determined,which can be used to evaluate reasonableness of spinning gait parameters.
文摘Concrete Filled FRP (Reinforced Polymeric Plastic) Tubes (CFFT) and Reinforced Concrete Filled FRP Tubes (RCFFT) are known to have the capability to enhance structural performance in terms of structural stability, ductility, as well as chemical resistance when compared with conventional concrete members. In this study, the authors evaluate the structural performance of the CFFT and the RCFFT through flexural tests for the purpose of applying the members as flexural ones. Moreover, the compressive behavior of the CFFT and the RCFFT members was investigated to examine their confinement effects. Based on the experimental and analytical results of the compressive behavior of the members, equations for estimating the ultimate compressive strengths of the CFFT and the RCFFT were proposed. In addition, the degree of improvement on the flexural performance of the RCFFT member strengthened by the FRP was analyzed from the flexural tests.
基金Project supported by the National Natural Science Foundation of China (Nos. 50875057 and 51105097)the State Key Laboratory of Robotics and Systems (No. SKLRS200901A04), China
文摘This study presents and verifies a new idea for constructing a rotary traveling wave ultrasonic motor (USM) that uses the radial bending mode of a ring. In the new design, 20 trapezoid cross section slots are cut symmetrically in the outer surface of a thick duralumin alloy ring, where 20 PZT stacks are nested. In each slot, two wedging blocks are set between the PZT stack and the two sides of the slot respectively to apply preloading on the PZT ceramics. Two radial bending modes of the stator that have a phase difference of a quarter wavelength on space are generated by using the d33 operating mode of the PZT elements, and then a flexural traveling wave is formed by the superimposing of two standing waves whose amplitudes are equal and phases are different by 90~ temporally. Two conical rotors are pressed to each end of the ring type stator by a coiled spring. The finite element method (FEM) simulation is developed to validate the feasibility of the proposed motor. The maximal speed and torque of the prototype are tested to be 126 r/rain and 0.8 N'm, respectively.