Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight...Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.展开更多
Based on the basic theory of mechanics,kinematic and dynamic analysis for a slider-crank mechanism with a balance mechanism is performed.The theoretical formula of the load spectrum for the interaction between the cra...Based on the basic theory of mechanics,kinematic and dynamic analysis for a slider-crank mechanism with a balance mechanism is performed.The theoretical formula of the load spectrum for the interaction between the crank shaft and the bearing seat of the upper beam is achieved by approximately simplifying the mechanical model of the crank shaft.The simulation for the load spectrum data of combined frame under the operating conditions of blanking or piling is performed using Matlab and the law of the load spectrum curves under these two conditions is analyzed.The simulation results show that under a no-load condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic sine wave and under the piling condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic pulse wave.The simulation results can provide a theoretical foundation for the load determination during the process of analyzing the dynamic characteristics on the combined frame of a closed high-speed press through the finite element method.展开更多
The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite eleme...The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite element method. Parametric analyses including the degree of inclination and the distance between soil and pile are carried out herein. When the displacement of soil on the left side and right side of a pile is identical, deformation of a vertical pile and an inclined pile is highly close in both cases of surcharge load and uniform soil movement. When the couple effect of soil displacement and axial load occurs, settlement of an inclined pile is greater than that of a vertical pile under the same axial load, and bearing capacity of an inclined pile is smaller than that of a vertical pile. This is quite different from the case when the inclined pile is not affected by soil displacement. For inclined piles, P-Δ effect of axial load would lead to a large increase in bending moment, however, for the vertical pile, P-Δ effect of axial load can be neglected. Although the direction of inclination of piles is reverse, deformation of piles caused by uniform soil movement is totally the same. For the inclined piles discussed herein, bending moment(-8 m to-17 m under the ground) relies heavily on uniform soil movement and does not change during the process of applying axial load. When the thickness of soil is less than the pile length, the greater the thickness of soil, the larger the bending moment at lower part of the inclined pile. When the thickness of soil is larger than the pile length, bending moment at lower part of the inclined pile is zero.展开更多
This paper studies the dynamic shell buckling behavior of multi-walled carbon nanotubes(MWNTs) embedded in an elastic medium under step axial load based on continuum mechanics model.It is shown that,for occurrence of ...This paper studies the dynamic shell buckling behavior of multi-walled carbon nanotubes(MWNTs) embedded in an elastic medium under step axial load based on continuum mechanics model.It is shown that,for occurrence of dynamic shell buckling of MWNTs or MWNTs embedded in an elastic medium,the buckling stress is higher than the critical buckling stress of the corresponding static shell buckling under otherwise identical conditions.Detailed results are demonstrated for dynamic shell buckling of individual double-walled carbon nanotubes(DWNTs) or DWNTs embedded in an elastic medium.A phenomenon is shown that DWNTs or embedded DWNTs in dynamic shell buckling are prone to axisymmetric buckling rather than non-axisymmetric buckling.Numerical results also indicate that the axial buckling form shifts from the lower buckling mode to the higher buckling mode with increasing buckling stress,but the buckling mode is invariable for a certain domain of buckling stress.Further,an approximate analytic formula is presented for the buckling stress and the associated buckling wavelength for dynamic axisymmetric buckling of embedded DWNTs.The effect of radii is also examined.展开更多
The specimens of a high carbon chromium steel were quenched and tempered at 150℃, 180℃ and 300℃. Such specimens were tested via rotating bending and a push-pull type of axial loading to investigate the influences o...The specimens of a high carbon chromium steel were quenched and tempered at 150℃, 180℃ and 300℃. Such specimens were tested via rotating bending and a push-pull type of axial loading to investigate the influences of loading condition on the behaviour of very-high-cycle fatigue (VHCF). Experimental results show the different influences of inclusion size on the fa- tigue life for the two loading conditions. Predominant factors and mechanism for the fine-granular-area (FGA) of crack origin were discussed. In addition, a reliability analysis based on a modified Tanaka-Mura model was carried out to evaluate the sen- sitivity of inclusion size, stress, and AKFGA to the life of VHCF crack initiation.展开更多
Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided com...Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.展开更多
文摘Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.
基金The Key Technologies R& D Program of Jiangsu Province(No. BE2006036)Transformation Program of Science and Technology Achievements of Jiangsu Province (No. BA2008030)
文摘Based on the basic theory of mechanics,kinematic and dynamic analysis for a slider-crank mechanism with a balance mechanism is performed.The theoretical formula of the load spectrum for the interaction between the crank shaft and the bearing seat of the upper beam is achieved by approximately simplifying the mechanical model of the crank shaft.The simulation for the load spectrum data of combined frame under the operating conditions of blanking or piling is performed using Matlab and the law of the load spectrum curves under these two conditions is analyzed.The simulation results show that under a no-load condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic sine wave and under the piling condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic pulse wave.The simulation results can provide a theoretical foundation for the load determination during the process of analyzing the dynamic characteristics on the combined frame of a closed high-speed press through the finite element method.
基金Project(51208071)supported by the National Natural Science Foundation of ChinaProject(2010CB732106)supported by the National Basic Research Program of China
文摘The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite element method. Parametric analyses including the degree of inclination and the distance between soil and pile are carried out herein. When the displacement of soil on the left side and right side of a pile is identical, deformation of a vertical pile and an inclined pile is highly close in both cases of surcharge load and uniform soil movement. When the couple effect of soil displacement and axial load occurs, settlement of an inclined pile is greater than that of a vertical pile under the same axial load, and bearing capacity of an inclined pile is smaller than that of a vertical pile. This is quite different from the case when the inclined pile is not affected by soil displacement. For inclined piles, P-Δ effect of axial load would lead to a large increase in bending moment, however, for the vertical pile, P-Δ effect of axial load can be neglected. Although the direction of inclination of piles is reverse, deformation of piles caused by uniform soil movement is totally the same. For the inclined piles discussed herein, bending moment(-8 m to-17 m under the ground) relies heavily on uniform soil movement and does not change during the process of applying axial load. When the thickness of soil is less than the pile length, the greater the thickness of soil, the larger the bending moment at lower part of the inclined pile. When the thickness of soil is larger than the pile length, bending moment at lower part of the inclined pile is zero.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11172304,11202210,11021262 and 10972010)the National Basic Research Program of China (Grant No. 2012CB937500)
文摘This paper studies the dynamic shell buckling behavior of multi-walled carbon nanotubes(MWNTs) embedded in an elastic medium under step axial load based on continuum mechanics model.It is shown that,for occurrence of dynamic shell buckling of MWNTs or MWNTs embedded in an elastic medium,the buckling stress is higher than the critical buckling stress of the corresponding static shell buckling under otherwise identical conditions.Detailed results are demonstrated for dynamic shell buckling of individual double-walled carbon nanotubes(DWNTs) or DWNTs embedded in an elastic medium.A phenomenon is shown that DWNTs or embedded DWNTs in dynamic shell buckling are prone to axisymmetric buckling rather than non-axisymmetric buckling.Numerical results also indicate that the axial buckling form shifts from the lower buckling mode to the higher buckling mode with increasing buckling stress,but the buckling mode is invariable for a certain domain of buckling stress.Further,an approximate analytic formula is presented for the buckling stress and the associated buckling wavelength for dynamic axisymmetric buckling of embedded DWNTs.The effect of radii is also examined.
基金supported by the National Basic Research Program of China(Grant No.2012CB937500)the National Natural Science Foundation of China(Grant Nos.11172304,11021262 and 11202210)
文摘The specimens of a high carbon chromium steel were quenched and tempered at 150℃, 180℃ and 300℃. Such specimens were tested via rotating bending and a push-pull type of axial loading to investigate the influences of loading condition on the behaviour of very-high-cycle fatigue (VHCF). Experimental results show the different influences of inclusion size on the fa- tigue life for the two loading conditions. Predominant factors and mechanism for the fine-granular-area (FGA) of crack origin were discussed. In addition, a reliability analysis based on a modified Tanaka-Mura model was carried out to evaluate the sen- sitivity of inclusion size, stress, and AKFGA to the life of VHCF crack initiation.
基金supported by the National Natural Science Foundation of China(Grant Nos.50909059,51279222)
文摘Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.