In this paper,a nonconforming rectangular plate element,the modified incomplete biquadratic plate element,is considered. The asympotic optimal L~∞-error estimate is obtained for the plate bending problem. This proof ...In this paper,a nonconforming rectangular plate element,the modified incomplete biquadratic plate element,is considered. The asympotic optimal L~∞-error estimate is obtained for the plate bending problem. This proof is based on the method of regularized Green's function and 'the trick of auxiliary element'.展开更多
This paper discusses the application of the boundary contour method fo r resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation bas...This paper discusses the application of the boundary contour method fo r resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation based on the Kirc hhoff hypothesis and a very useful application of Stokes' Theorem are presented to convert surface integrals on boundary elements to the computation of bending potential functions on the discretized boundary points,even for curved surface elements of arbitrary shape. Singularity and treatment of the discontinued corne r point are not needed at all. The evaluation of the physics variant at internal points is also shown in this article. Numerical results are presented for some plate bending problems and compared against analytical and previous solutions.展开更多
文摘In this paper,a nonconforming rectangular plate element,the modified incomplete biquadratic plate element,is considered. The asympotic optimal L~∞-error estimate is obtained for the plate bending problem. This proof is based on the method of regularized Green's function and 'the trick of auxiliary element'.
文摘This paper discusses the application of the boundary contour method fo r resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation based on the Kirc hhoff hypothesis and a very useful application of Stokes' Theorem are presented to convert surface integrals on boundary elements to the computation of bending potential functions on the discretized boundary points,even for curved surface elements of arbitrary shape. Singularity and treatment of the discontinued corne r point are not needed at all. The evaluation of the physics variant at internal points is also shown in this article. Numerical results are presented for some plate bending problems and compared against analytical and previous solutions.