The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. Th...The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of bis obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined.展开更多
According to the winter temperature of Peking,the freeze-thaw(FT) condition in laboratory was determined.Seven groups of epoxy asphalt concrete(EAC) specimen were exposed to different FT cycles.The flexural modulu...According to the winter temperature of Peking,the freeze-thaw(FT) condition in laboratory was determined.Seven groups of epoxy asphalt concrete(EAC) specimen were exposed to different FT cycles.The flexural modulus and fracture energy(G_F) of EAC exposed to different FT cycles were obtained through the 3-point bending test.Meanwhile,the plane strain fracture toughness(K_(IC)) of EAC was obtained through numerical simulation.The results show that the flexural modulus of the FT conditioned EAC samples decreases with the increase of FT cycles.The FT damage of flexural modulus is 60%after 30 FT cycles.Nevertheless,with the increase of FT cycles,the G_F and K_(IC) of EAC decrease first and then increase after 15 FT cycles.展开更多
In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures...In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures with flexible base(S1),combined base(S2),and semi-rigid base(S3)were selected to perform field strain tests under static and dynamic load using the fiber Bragg grating optical sensing technology.The changing characteristics of the strain field along the horizontal and depth directions of pavements were analyzed.The results indicate that the most unfavorable asphalt pavement layers were the upper-middle surface layer and the lower base layer.In addition,the most unfavorable loading positions on the surface layer and the base layer were the center of wheel load and the gap center between two wheels,respectively.The most unfavorable layer of the surface layers gradually moved from the lower layer to the upper layer with the increase of base layer modulus.The power function relationships between structural layer strain and vehicle speed were revealed.The semi-rigid base asphalt pavement was the most durable pavement type,since its strain value was lower compared to those of the other structures.展开更多
The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated s...The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated sample is put forward. Considering the influence of anisotropy on hardening properties and the stress state in popular forming process,plane strain compression test on cubic specimen made from laminated sample was advanced. Results show that the deformation range of hardening curves obtained from the presented methods is wide,which meets the need for the application in sheet metal forming processes. In view of the characteristics of methods presented in the paper and the stress strain state of various forming processes,the adaptability of the two methods presented in this paper is given.展开更多
Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of ...Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of foamcored sandwich materials is weakened at elevated temperatures. In practice,the effect of high temperature cannot be ignored,because the composites and foams are sensitive to the change of temperature in the environment. In this study,a series of single-leg bending beams were tested at different temperatures to evaluate the influences of high temperatures on Mode Ⅰ/Ⅱ mixed interfacial fracture of foam core sandwich materials. The temperature was from29 ℃ to 90 ℃,covered the glass transition temperature of composites and foam core,respectively. The Mode Ⅰ/Ⅱ mixed interfacial crack prorogation and its corresponding interfacial strain energy release rate were summarized.展开更多
The analysis used simple finite elements is performed to simulate the tensile behavior of corroded reinforcing bars extracted from three actual concrete structures. The cross-sectional area of the elements is set to h...The analysis used simple finite elements is performed to simulate the tensile behavior of corroded reinforcing bars extracted from three actual concrete structures. The cross-sectional area of the elements is set to have the actual distribution measured by 3D laser scanner system. The variable factor in the analysis is the length of the elements. The analysis results show that the length of the elements has a major influence on the deformation capacity after yielding. The calculated stress-strain curves, obtained using the elements with a length that is 2 times the bar diameter, are in good agreement with the tensile test results. The calculated stress-strain curves are modeled using a bi-linear model to facilitate the FEA (finite element analysis) of an overall concrete structure. From the analysis results, both the tensile and yield strengths decrease in proportion to the reduction of the minimum cross-sectional area of corroded bars. The ultimate strain has a remarkable decrement as the reduction of the minimum cross-sectional area. Formulas for determining these values are proposed as a function of the decrement ratio of the minimum cross-sectional area of a corroded bar.展开更多
Density functional and many-body perturbation theories calculations were carried out to investigate fundamental and optical bandgap, exciton binding energy and optical absorption property of normal and strain- and twi...Density functional and many-body perturbation theories calculations were carried out to investigate fundamental and optical bandgap, exciton binding energy and optical absorption property of normal and strain- and twist-engineered few-layer black phosphorus (BP). We found that the fundamental bandgaps of few layer BP can be engineered by layer stacking and in-plane strain, with linear relationships to their associated exciton binding energies. The strain-dependent optical absorption behaviors are also anisotropic that the position of the first absorption peak monotonically blue-shifts as the strain applies to either direction for incident light polarized along the armchair direction, but this is not the case for that along the zigzag direction. Given those striking properties, we proposed two prototype devices for building potentially more balanced light absorbers and light filter passes, which promotes further applications and investigations of BP in nanoelectronics and optoelectronics.展开更多
In this paper,we study Laguerre isothermic surfaces in R3.We show that the Darboux transformation of a Laguerre isothermic surface x produces a new Laguerre isothermic surface x and their respective Laguerre Gauss map...In this paper,we study Laguerre isothermic surfaces in R3.We show that the Darboux transformation of a Laguerre isothermic surface x produces a new Laguerre isothermic surface x and their respective Laguerre Gauss maps form a Darboux pair of each other at the corresponding point.We also classify the surfaces which are both Laguerre isothermic and Laguerre minimal and show that they must be Laguerre equivalent to surfaces with vanishing mean curvature in R3,R13 or R03.展开更多
A new analytical method for springback of small curvature plane bending is addressed with unloading rule of classical elastic-plastic theory and principle of strain superposition.We start from strain analysis of plane...A new analytical method for springback of small curvature plane bending is addressed with unloading rule of classical elastic-plastic theory and principle of strain superposition.We start from strain analysis of plane bending which has initial curvature,and the theoretic derivation is on the widely applicable basic hypotheses.The results are unified to geometry constraint equations and springback equation of plane bending,which can be evolved to straight beam plane bending and pure bending.The expanding and setting round process is one of the situations of plane bending,which is a bend-stretching process of plane curved beam.In the present study,springback equation of plane bending is used to analyze the expanding and setting round process,and the results agree with the experimental data.With a reasonable prediction accuracy,this new analytical method for springback of plane bending can meet the needs of applications in engineering.展开更多
In the present work, analytical solutions for laminated composite doubly curved panels on rectangular plan form undergoing small deformations and subjected to uniformly distributed transverse load have been obtained. ...In the present work, analytical solutions for laminated composite doubly curved panels on rectangular plan form undergoing small deformations and subjected to uniformly distributed transverse load have been obtained. The problem is formulated using first order shear deformation theory. The spatial descretization of the linear differential equations is carried out using fast converging finite double Chebyshev series. The effect of panel thickness, curvature, boundary conditions, lamination scheme as well as material property on the static response of panel has been investigated in detail.展开更多
基金The Project of the Ministry of Housing and Urban-Rural Development(No.2014-K4-010)
文摘The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of bis obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined.
基金The National Natural Science Foundation of China(No.51378122)
文摘According to the winter temperature of Peking,the freeze-thaw(FT) condition in laboratory was determined.Seven groups of epoxy asphalt concrete(EAC) specimen were exposed to different FT cycles.The flexural modulus and fracture energy(G_F) of EAC exposed to different FT cycles were obtained through the 3-point bending test.Meanwhile,the plane strain fracture toughness(K_(IC)) of EAC was obtained through numerical simulation.The results show that the flexural modulus of the FT conditioned EAC samples decreases with the increase of FT cycles.The FT damage of flexural modulus is 60%after 30 FT cycles.Nevertheless,with the increase of FT cycles,the G_F and K_(IC) of EAC decrease first and then increase after 15 FT cycles.
基金Projects(51908071,51708071)supported by National Natural Science Foundation of ChinaProject(2020JJ5975)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(18C0194)supported by the Scientific Research Project of Education Department of Hunan Province,ChinaProject(kfj190301)supported by Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport(Changsha University of Science&Technology),China。
文摘In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures with flexible base(S1),combined base(S2),and semi-rigid base(S3)were selected to perform field strain tests under static and dynamic load using the fiber Bragg grating optical sensing technology.The changing characteristics of the strain field along the horizontal and depth directions of pavements were analyzed.The results indicate that the most unfavorable asphalt pavement layers were the upper-middle surface layer and the lower base layer.In addition,the most unfavorable loading positions on the surface layer and the base layer were the center of wheel load and the gap center between two wheels,respectively.The most unfavorable layer of the surface layers gradually moved from the lower layer to the upper layer with the increase of base layer modulus.The power function relationships between structural layer strain and vehicle speed were revealed.The semi-rigid base asphalt pavement was the most durable pavement type,since its strain value was lower compared to those of the other structures.
文摘The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated sample is put forward. Considering the influence of anisotropy on hardening properties and the stress state in popular forming process,plane strain compression test on cubic specimen made from laminated sample was advanced. Results show that the deformation range of hardening curves obtained from the presented methods is wide,which meets the need for the application in sheet metal forming processes. In view of the characteristics of methods presented in the paper and the stress strain state of various forming processes,the adaptability of the two methods presented in this paper is given.
基金supported in part by the National Key Research and Development Program of China(No.2017YFC0703001)the National Natural Science Foundation of China(No. 51678297).
文摘Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of foamcored sandwich materials is weakened at elevated temperatures. In practice,the effect of high temperature cannot be ignored,because the composites and foams are sensitive to the change of temperature in the environment. In this study,a series of single-leg bending beams were tested at different temperatures to evaluate the influences of high temperatures on Mode Ⅰ/Ⅱ mixed interfacial fracture of foam core sandwich materials. The temperature was from29 ℃ to 90 ℃,covered the glass transition temperature of composites and foam core,respectively. The Mode Ⅰ/Ⅱ mixed interfacial crack prorogation and its corresponding interfacial strain energy release rate were summarized.
文摘The analysis used simple finite elements is performed to simulate the tensile behavior of corroded reinforcing bars extracted from three actual concrete structures. The cross-sectional area of the elements is set to have the actual distribution measured by 3D laser scanner system. The variable factor in the analysis is the length of the elements. The analysis results show that the length of the elements has a major influence on the deformation capacity after yielding. The calculated stress-strain curves, obtained using the elements with a length that is 2 times the bar diameter, are in good agreement with the tensile test results. The calculated stress-strain curves are modeled using a bi-linear model to facilitate the FEA (finite element analysis) of an overall concrete structure. From the analysis results, both the tensile and yield strengths decrease in proportion to the reduction of the minimum cross-sectional area of corroded bars. The ultimate strain has a remarkable decrement as the reduction of the minimum cross-sectional area. Formulas for determining these values are proposed as a function of the decrement ratio of the minimum cross-sectional area of a corroded bar.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11274380, 11004244 and 91433103)the National Basic Research Program of China (Grant No. 2012CB932704)
文摘Density functional and many-body perturbation theories calculations were carried out to investigate fundamental and optical bandgap, exciton binding energy and optical absorption property of normal and strain- and twist-engineered few-layer black phosphorus (BP). We found that the fundamental bandgaps of few layer BP can be engineered by layer stacking and in-plane strain, with linear relationships to their associated exciton binding energies. The strain-dependent optical absorption behaviors are also anisotropic that the position of the first absorption peak monotonically blue-shifts as the strain applies to either direction for incident light polarized along the armchair direction, but this is not the case for that along the zigzag direction. Given those striking properties, we proposed two prototype devices for building potentially more balanced light absorbers and light filter passes, which promotes further applications and investigations of BP in nanoelectronics and optoelectronics.
基金supported by National Natural Science Foundation of China (Grant No.10826062)the Fundamental Research Funds for the Central Universities (Grant No.2011121040)
文摘In this paper,we study Laguerre isothermic surfaces in R3.We show that the Darboux transformation of a Laguerre isothermic surface x produces a new Laguerre isothermic surface x and their respective Laguerre Gauss maps form a Darboux pair of each other at the corresponding point.We also classify the surfaces which are both Laguerre isothermic and Laguerre minimal and show that they must be Laguerre equivalent to surfaces with vanishing mean curvature in R3,R13 or R03.
基金supported by the National Natural Science Foundation of China(Grant No.50805126)the Natural Science Foundation of Hebei Province(Grant No.E2009000389)
文摘A new analytical method for springback of small curvature plane bending is addressed with unloading rule of classical elastic-plastic theory and principle of strain superposition.We start from strain analysis of plane bending which has initial curvature,and the theoretic derivation is on the widely applicable basic hypotheses.The results are unified to geometry constraint equations and springback equation of plane bending,which can be evolved to straight beam plane bending and pure bending.The expanding and setting round process is one of the situations of plane bending,which is a bend-stretching process of plane curved beam.In the present study,springback equation of plane bending is used to analyze the expanding and setting round process,and the results agree with the experimental data.With a reasonable prediction accuracy,this new analytical method for springback of plane bending can meet the needs of applications in engineering.
文摘In the present work, analytical solutions for laminated composite doubly curved panels on rectangular plan form undergoing small deformations and subjected to uniformly distributed transverse load have been obtained. The problem is formulated using first order shear deformation theory. The spatial descretization of the linear differential equations is carried out using fast converging finite double Chebyshev series. The effect of panel thickness, curvature, boundary conditions, lamination scheme as well as material property on the static response of panel has been investigated in detail.