The expert knowledge has been widely used to improve the remotely sensed classification accuracy. Generally, the ex-pert classification system mainly depends on DEM and some thematic maps. The spatial relationship inf...The expert knowledge has been widely used to improve the remotely sensed classification accuracy. Generally, the ex-pert classification system mainly depends on DEM and some thematic maps. The spatial relationship information in pixel level was commonly introduced into the expert classification. Because the geographic objects were found spatially dependent relationship to a certain degree, the commonly used basic unit of spatial relationship information in pixel greatly limited the efficiency of spatial in-formation. A patch-based neighborhood searching algorithm was proposed to implement the expert classification. The homogene-ous spectral unit, patch, was used as the basic unit in the spatial object granularity, and different types of patches' relationship in-formation were obtained through a spatial neighborhood searching algorithm. And then the neighborhood information and DEM data were added into the expert classification system and used to modify the primitive classification errors. In this case, the classi-fication accuracies of wetland, grassland and cropland were obviously improved. In this work, water was used as base object, and different types of water extraction methods were tested to get a result in a high accuracy.展开更多
基金Supported by the National 973 Program of China (No. 2006CB701300)the Program for Cheung Kong Scholars and Innovative Re-search Team in University (No. IRT0438)+1 种基金the China/Ireland Science and Technology Collaboration Research Fund(ICT,2006/2007)the Opening Foundation of LED, South China Sea Institute of Oceanography, Chinese Academy of Sciences.
文摘The expert knowledge has been widely used to improve the remotely sensed classification accuracy. Generally, the ex-pert classification system mainly depends on DEM and some thematic maps. The spatial relationship information in pixel level was commonly introduced into the expert classification. Because the geographic objects were found spatially dependent relationship to a certain degree, the commonly used basic unit of spatial relationship information in pixel greatly limited the efficiency of spatial in-formation. A patch-based neighborhood searching algorithm was proposed to implement the expert classification. The homogene-ous spectral unit, patch, was used as the basic unit in the spatial object granularity, and different types of patches' relationship in-formation were obtained through a spatial neighborhood searching algorithm. And then the neighborhood information and DEM data were added into the expert classification system and used to modify the primitive classification errors. In this case, the classi-fication accuracies of wetland, grassland and cropland were obviously improved. In this work, water was used as base object, and different types of water extraction methods were tested to get a result in a high accuracy.