Understanding the relationship between landscape pattems and ecological processes has been a central yet challenging research theme in landscape ecology. Over the past decades, many landscape metrics have been propose...Understanding the relationship between landscape pattems and ecological processes has been a central yet challenging research theme in landscape ecology. Over the past decades, many landscape metrics have been proposed but few directly incorporated ecological processes. In this paper, we developed a landscape index, namely, location-weighted landscape index (LWLI) to highlight the role of landscape type in ecological processes, such as nutrient losses and soil erosion. Within the framework of the Lorenz curve theory, we develop this index by integrating land- scape pattern and point-based measurements at a watershed scale. The index can be used to characterize the contribution of landscape pattern to ecological processes (e.g. nutrient losses) with respect to a specific monitoring point in a watershed. Through a case study on nutrient losses in an agricultural area in northeastern China, we found that nutrient losses tended to be higher for a watershed with a higher LWLI value, and vice versa. It implied that LWLI can be used to evaluate the potential risk of nutrient losses or soil erosion by comparing their values across watersheds. In addition, this index can be extended to characterize ecological processes, such as the effect of landscape pattern on wildlife inhabitation and urban heat island effect. Finally, we discuss several problems that should be paid attention to when applying this index to a heterogeneous landscape site.展开更多
A differentiable manifold is said to be contact if it admits a linear functional f on the tangent bundle satisfying f ∧(df)^(M-1)≠0.This remark obtain the following the classification:Let M be a complete connected c...A differentiable manifold is said to be contact if it admits a linear functional f on the tangent bundle satisfying f ∧(df)^(M-1)≠0.This remark obtain the following the classification:Let M be a complete connected contact hyper-surface of CH^2(-4),then M is congruent to one of the following: (i)A tube of radius r>0 around a totally geodesic,totally real hyperbolic space form H^2(-1); (ii)A tube of radius r>0 around a totally geodesic complex hyperbolic space form CH^1(-4); (iii)A geodesic hypersphere of radius r>0,or (iv)A horosphere.展开更多
Experiments were conducted to investigate the cooling manner of an ultra-thick hot aluminum alloy plate during multistage quenching. Cooling curves and heat flux curves of different rapid quenching flux varied from 23...Experiments were conducted to investigate the cooling manner of an ultra-thick hot aluminum alloy plate during multistage quenching. Cooling curves and heat flux curves of different rapid quenching flux varied from 23 to 40 L min-1 and were analyzed in detail. In this investigation, cooling process was divided into the following four steps: (Ⅰ) starting step, (Ⅱ) rapid cooling step, (Ⅲ) slow cooling step, and (Ⅳ) stopping step. Based on the curves, the calculation method for surface transfer coefficient was provided, and the effects of coefficient on surface temperature and quenching flux were discussed. Results showed that the transfer coefficient disagreed with heat flux and that it is a nonlinear function of surface temperature. The highest coefficient was observed not in the rapid cooling step with the largest heat flux but in the slow cooling step with lower heat flux. The coefficient increased with surface temperature ranging from 480 to 150℃, and a coefficient peak appeared in the temperature range of 150- 100℃. The coefficient also increased with quenching flux. Finally, a simulation was performed using the finite element method to verify the reliability of the coefficient results, which showed good agreement with the measurement values.展开更多
基金Under the auspices of Chinese Academy of Sciences (No. KZCX2-YW-421)National Natural Science Foundation of China (No. 40621061, 30570319)
文摘Understanding the relationship between landscape pattems and ecological processes has been a central yet challenging research theme in landscape ecology. Over the past decades, many landscape metrics have been proposed but few directly incorporated ecological processes. In this paper, we developed a landscape index, namely, location-weighted landscape index (LWLI) to highlight the role of landscape type in ecological processes, such as nutrient losses and soil erosion. Within the framework of the Lorenz curve theory, we develop this index by integrating land- scape pattern and point-based measurements at a watershed scale. The index can be used to characterize the contribution of landscape pattern to ecological processes (e.g. nutrient losses) with respect to a specific monitoring point in a watershed. Through a case study on nutrient losses in an agricultural area in northeastern China, we found that nutrient losses tended to be higher for a watershed with a higher LWLI value, and vice versa. It implied that LWLI can be used to evaluate the potential risk of nutrient losses or soil erosion by comparing their values across watersheds. In addition, this index can be extended to characterize ecological processes, such as the effect of landscape pattern on wildlife inhabitation and urban heat island effect. Finally, we discuss several problems that should be paid attention to when applying this index to a heterogeneous landscape site.
文摘A differentiable manifold is said to be contact if it admits a linear functional f on the tangent bundle satisfying f ∧(df)^(M-1)≠0.This remark obtain the following the classification:Let M be a complete connected contact hyper-surface of CH^2(-4),then M is congruent to one of the following: (i)A tube of radius r>0 around a totally geodesic,totally real hyperbolic space form H^2(-1); (ii)A tube of radius r>0 around a totally geodesic complex hyperbolic space form CH^1(-4); (iii)A geodesic hypersphere of radius r>0,or (iv)A horosphere.
基金supported by the National Basic Research Program of China(Grant No.2012CB619500)the Major State Research Program of China(Grant No.2016YFB0300901)+1 种基金the National Natural Science Foundation of China(Grant No.51375503)the BaGui Scholars Program of China’s Guangxi Zhuang Autonomous Region(Grant No.2013A017)
文摘Experiments were conducted to investigate the cooling manner of an ultra-thick hot aluminum alloy plate during multistage quenching. Cooling curves and heat flux curves of different rapid quenching flux varied from 23 to 40 L min-1 and were analyzed in detail. In this investigation, cooling process was divided into the following four steps: (Ⅰ) starting step, (Ⅱ) rapid cooling step, (Ⅲ) slow cooling step, and (Ⅳ) stopping step. Based on the curves, the calculation method for surface transfer coefficient was provided, and the effects of coefficient on surface temperature and quenching flux were discussed. Results showed that the transfer coefficient disagreed with heat flux and that it is a nonlinear function of surface temperature. The highest coefficient was observed not in the rapid cooling step with the largest heat flux but in the slow cooling step with lower heat flux. The coefficient increased with surface temperature ranging from 480 to 150℃, and a coefficient peak appeared in the temperature range of 150- 100℃. The coefficient also increased with quenching flux. Finally, a simulation was performed using the finite element method to verify the reliability of the coefficient results, which showed good agreement with the measurement values.