期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于最小二乘法的曲面生成算法研究 被引量:22
1
作者 彭芳瑜 周济 +1 位作者 周艳红 周云飞 《工程图学学报》 CSCD 1999年第3期41-46,共6页
针对不均匀截面线族曲面生成问题,本文提出了一种基于最小二乘法的曲面生成算法。这种算法在插值的思想上融合了逼近的思想,因此解决了困截面线旅不均匀而使曲面参数线族不合理并导致曲面光顺性不好的问题。该算法已在自行设计的面向... 针对不均匀截面线族曲面生成问题,本文提出了一种基于最小二乘法的曲面生成算法。这种算法在插值的思想上融合了逼近的思想,因此解决了困截面线旅不均匀而使曲面参数线族不合理并导致曲面光顺性不好的问题。该算法已在自行设计的面向数控的曲面造型系统中实现. 展开更多
关键词 曲面插值 曲面生成算法 曲面逼近 最小二乘法
下载PDF
A manifold approach to generating iso-scallop trajectories in three-axis machining 被引量:2
2
作者 CHEN XuBing LI WenLong XIONG YouLun 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第1期131-139,共9页
A novel approach of iso-scallop trajectory generation for smooth manifold surfaces has been developed. Firstly,by defining homeomorphism mapping relations and differentiable structures,the smooth manifold surface is m... A novel approach of iso-scallop trajectory generation for smooth manifold surfaces has been developed. Firstly,by defining homeomorphism mapping relations and differentiable structures,the smooth manifold surface is mapped into several Euclidean planes,thus its trajectory generation can be decomposed into planar curve-filling tasks. Secondly,in the generation of direction-parallel trajectories,the calculation of the cutting interval and the curvature is given,depending on the generation of the first curve in the projection view. Thirdly,after automatic adherences of inverse projection curves,the filled curves are mapped into the original surface inversely to form trajectories. Although the required trajectories are iso-scallop,the trajectory intervals are variable according to the curvature changes at the projection point,which is advantageous to improving the trajectory quality. The proposed approach has appealing merits of dimensionality reduction,which decreases the algorithm complexity. Finally,numerical and machining examples are given to illustrate its feasibility and validity. 展开更多
关键词 smooth manifold surface iso-scallop trajectory three-axis machining homeomorphism mapping REGULARITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部