文章基于改进更快的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)模型,提出了一种行人识别系统设计。介绍了计算机视觉常用技术手段与方法、通行检测步骤,分析了主流的算法优缺点,利用深度学习方法提...文章基于改进更快的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)模型,提出了一种行人识别系统设计。介绍了计算机视觉常用技术手段与方法、通行检测步骤,分析了主流的算法优缺点,利用深度学习方法提取图像特征,然后使用改进Faster R-CNN模型进行目标检测。在改进Faster R-CNN模型中,采用了自适应尺度池化和增强的感兴趣区域(Region of Interest,RoI)池化技术,可以提高模型检测精度和速度。展开更多
文摘文章基于改进更快的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)模型,提出了一种行人识别系统设计。介绍了计算机视觉常用技术手段与方法、通行检测步骤,分析了主流的算法优缺点,利用深度学习方法提取图像特征,然后使用改进Faster R-CNN模型进行目标检测。在改进Faster R-CNN模型中,采用了自适应尺度池化和增强的感兴趣区域(Region of Interest,RoI)池化技术,可以提高模型检测精度和速度。