A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akai...A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akaike's AIC criterion.Some numerical results of gyro drift models are obtained for analysis of gyro system. As the trend and irregular components of the observed time series can be modeled simultaneously, it is statistically more accurate and efficient than that modeled separately.展开更多
When Kalman filter is used in the estimation of Vasicek term structure of interest rates,it is usual to assume that the measurement noise is uncorrelated.Study results are more favorable to the assumption of correlate...When Kalman filter is used in the estimation of Vasicek term structure of interest rates,it is usual to assume that the measurement noise is uncorrelated.Study results are more favorable to the assumption of correlated measurement noise.An augmented state Kalman filter form for Vasicek model is proposed to optimally estimate the unobservable state variable with the assumption of correlated measurement noise.Empirical results indicate that the model with sequentially correlated measurement noise can more accurately describe the dynamics of the term structure of interest rates.展开更多
The measurement accuracy of speed and distance in high speed train directly affects the control precision and driving efficiency of train control system. To improve the capability of train self control, a combined spe...The measurement accuracy of speed and distance in high speed train directly affects the control precision and driving efficiency of train control system. To improve the capability of train self control, a combined speed measurement and positioning method based on speed sensor and radar which is assisted by global positioning system(GPS) is proposed to improve the accuracy of measurement and reduce the dependence on the ground equipment. In consideration of the fact that the filtering precision of Kalman filter will decrease when the statistical characteristics are changing, this paper uses fuzzy comprehensive evaluation method to evaluate the sub filter, and information distribution coefficients are dynamically adjusted according to filtering reliability, which can improve the fusion accuracy and fault tolerance of the system. The sub filter is required to carry on the covariance shaping adaptive filtering when it is in the suboptimal state. The adjustment factor of error covariance is obtained according to the minimized cost function, which can improve the matching degree between the measured residual variance and the system recursive residual. The simulation results show that the improved filter algorithm can track the changes of the system effectively, enhance the filtering accuracy significantly, and improve the measurement accuracies of train speed and distance.展开更多
The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we de...The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering. Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates. Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone. Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface. The limit of detection of acetamiprid was determined to be 0.05 mg/L. In addition, the molecular structure of acetamiprid was simulated and the corresponding vibration modes of the characteristic bands of acetamiprid were calculated by density function theory. To demonstrate its practical application, the AgNRs array substrates were applied successfully to the rapid identification of acetamiprid residue on a cucumber's surface. These results confirmed possibility of utilizing the AgNRs SERS substrates as a new method for highly sensitive pesticide residue detection.展开更多
Close-packed Ag pyramidal arrays have been fabricated by using inverted pyramidal pits on Si as a template and used to generate plentiful and homogeneous surface-enhanced Raman scattering (SERS) hot sites. The sharp...Close-packed Ag pyramidal arrays have been fabricated by using inverted pyramidal pits on Si as a template and used to generate plentiful and homogeneous surface-enhanced Raman scattering (SERS) hot sites. The sharp nanotip and the four edges of the Ag pyramid result in strong electromagnetic field enhancement with an average enhancement factor (EF) of 2.84 × 10^7. Moreover, the features of the close-packed Ag pyramidal array can be well controlled, which allows SERS substrates with good reproducibility to be obtained. The relative standard deviation (RSD) was lower than 8.78% both across a single substrate and different batches of substrates.展开更多
Improving hot-spot intensity is a key issue in surface-enhanced Raman scattering (SERS). The bowtie nanoantenna (BNA) is an effective device used to concentrate light energy into a nanoscale volume and produce str...Improving hot-spot intensity is a key issue in surface-enhanced Raman scattering (SERS). The bowtie nanoantenna (BNA) is an effective device used to concentrate light energy into a nanoscale volume and produce strong hot spots. Nanosphere lithography (NSL) is a large-area and low-cost technique to produce BNA arrays; however, the SERS activity of NSL-fabricated BNAs is limited. In this paper, we present a simple method to improve the SERS activity of conventional NSL-fabricated BNAs by modifying their geometry. The new configuration is termed "silver-coated elevated bowtie nanoantenna" (SCEBNA). SCEBNAs perform intensive near-field enhancement in the gap cavities owing to the integrated contribution of the "lightning rod" effect, resonance coupling, and the formation of the plasmonic Fabry-Perot cavity. Experimental measurements and finite-difference time-domain simulations revealed that the hot-spot intensity and the substrate enhancement factor can be optimized by adjusting the silver thickness. The optimal sample has the capability of trace-amount detection with fine reproducibility.展开更多
For surface hardening of metal,a quasi-Dammann grating (QDG) is proposed and fabricated to generate array spots with proportional-intensity distribution.To get uniformly hardened band distribution and improve the wear...For surface hardening of metal,a quasi-Dammann grating (QDG) is proposed and fabricated to generate array spots with proportional-intensity distribution.To get uniformly hardened band distribution and improve the wear resistance of the sample surface,a three-order QDG is designed to produce array spots with enhanced intensity in the edge.The design and fabrication of the QDG are described in detail.The surface profile of the fabricated grating was measured,which shows that the fabrication error is less than 2%.The laser beam intensity distribution shaped by the QDG was tested by a laser beam analyzer to verify the validity of the QDG.The application of the QDG in the laser surface hardening of metal was experimentally investigated,and the results show that the hardness distribution of the modified layer and the wear resistance of the sample surface are improved significantly by using the QDG.展开更多
The silver (Ag) nanowire arrays with regular and uniform size were successfully fabricated inside the nanochannels of anodic aluminum oxide (AAO) template by a simple paired cell method. X-ray diffi'action (XRD...The silver (Ag) nanowire arrays with regular and uniform size were successfully fabricated inside the nanochannels of anodic aluminum oxide (AAO) template by a simple paired cell method. X-ray diffi'action (XRD) and scanning elec- tron microscopy (SEM) results indicate that the as-synthesized samples are composed of face-centered cubic structure, and the average diameter is about 60-70 nm. Transmission electron microscopy (TEM) and the corresponding fast Fourier transformation (FFT) results show that Ag nanowires have a preferred single-crystal structure. Ultravio- let-visible (UV-vis) spectrum of Ag nanowire arrays exhibits UV emission band at 383 nm which can be attributed to the transverse dipole resonance ofAg nanowire arrays. A good surface-enhanced Raman scattering (SERS) spectrum is observed by excitation with a 514.5 nm laser, and the intensity of the SERS peak is about 23 times higher than that of the normal Raman peak measured from an empty AAO template. The high enhancement factor suggests that this method can be used to fabricate SERS sensor with high efficiency.展开更多
Aluminium nanohole arrays with fixed diameter were fabricated by focused ion beam and the periodicities were turned.Aluminium nanohole arrays enhanced resonance Raman scattering spectra in the near ultraviolet region ...Aluminium nanohole arrays with fixed diameter were fabricated by focused ion beam and the periodicities were turned.Aluminium nanohole arrays enhanced resonance Raman scattering spectra in the near ultraviolet region were studied experimentally and theoretically,which revealed that the SERRS enhancement factor was as high as 6 orders.展开更多
Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that...Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov-Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed 'Gaussian conjugacy' in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity.展开更多
文摘A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akaike's AIC criterion.Some numerical results of gyro drift models are obtained for analysis of gyro system. As the trend and irregular components of the observed time series can be modeled simultaneously, it is statistically more accurate and efficient than that modeled separately.
文摘When Kalman filter is used in the estimation of Vasicek term structure of interest rates,it is usual to assume that the measurement noise is uncorrelated.Study results are more favorable to the assumption of correlated measurement noise.An augmented state Kalman filter form for Vasicek model is proposed to optimally estimate the unobservable state variable with the assumption of correlated measurement noise.Empirical results indicate that the model with sequentially correlated measurement noise can more accurately describe the dynamics of the term structure of interest rates.
基金National Natural Science Foundation of China(Nos.61763023,61164010)
文摘The measurement accuracy of speed and distance in high speed train directly affects the control precision and driving efficiency of train control system. To improve the capability of train self control, a combined speed measurement and positioning method based on speed sensor and radar which is assisted by global positioning system(GPS) is proposed to improve the accuracy of measurement and reduce the dependence on the ground equipment. In consideration of the fact that the filtering precision of Kalman filter will decrease when the statistical characteristics are changing, this paper uses fuzzy comprehensive evaluation method to evaluate the sub filter, and information distribution coefficients are dynamically adjusted according to filtering reliability, which can improve the fusion accuracy and fault tolerance of the system. The sub filter is required to carry on the covariance shaping adaptive filtering when it is in the suboptimal state. The adjustment factor of error covariance is obtained according to the minimized cost function, which can improve the matching degree between the measured residual variance and the system recursive residual. The simulation results show that the improved filter algorithm can track the changes of the system effectively, enhance the filtering accuracy significantly, and improve the measurement accuracies of train speed and distance.
基金supported by the National Natural Science Foundation of China (No.61575087, No.21505057, and No.61771227)the Natural Science Foundation ofJiangsu Province (No.BK20151164, No.BK20150227, and No.BK20170229)+2 种基金the Innovation Project of Jiangsu Province(No.KYLX16_1322)the Natural Science Foundation of the Jiangsu Higher Education Institutions (No.17KJB140007)Foundation of Xuzhou City (No.KC15MS030)
文摘The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering. Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates. Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone. Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface. The limit of detection of acetamiprid was determined to be 0.05 mg/L. In addition, the molecular structure of acetamiprid was simulated and the corresponding vibration modes of the characteristic bands of acetamiprid were calculated by density function theory. To demonstrate its practical application, the AgNRs array substrates were applied successfully to the rapid identification of acetamiprid residue on a cucumber's surface. These results confirmed possibility of utilizing the AgNRs SERS substrates as a new method for highly sensitive pesticide residue detection.
文摘Close-packed Ag pyramidal arrays have been fabricated by using inverted pyramidal pits on Si as a template and used to generate plentiful and homogeneous surface-enhanced Raman scattering (SERS) hot sites. The sharp nanotip and the four edges of the Ag pyramid result in strong electromagnetic field enhancement with an average enhancement factor (EF) of 2.84 × 10^7. Moreover, the features of the close-packed Ag pyramidal array can be well controlled, which allows SERS substrates with good reproducibility to be obtained. The relative standard deviation (RSD) was lower than 8.78% both across a single substrate and different batches of substrates.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (No. 21273092) and the National Basic Research Program of China (No. 2009CB939701).
文摘Improving hot-spot intensity is a key issue in surface-enhanced Raman scattering (SERS). The bowtie nanoantenna (BNA) is an effective device used to concentrate light energy into a nanoscale volume and produce strong hot spots. Nanosphere lithography (NSL) is a large-area and low-cost technique to produce BNA arrays; however, the SERS activity of NSL-fabricated BNAs is limited. In this paper, we present a simple method to improve the SERS activity of conventional NSL-fabricated BNAs by modifying their geometry. The new configuration is termed "silver-coated elevated bowtie nanoantenna" (SCEBNA). SCEBNAs perform intensive near-field enhancement in the gap cavities owing to the integrated contribution of the "lightning rod" effect, resonance coupling, and the formation of the plasmonic Fabry-Perot cavity. Experimental measurements and finite-difference time-domain simulations revealed that the hot-spot intensity and the substrate enhancement factor can be optimized by adjusting the silver thickness. The optimal sample has the capability of trace-amount detection with fine reproducibility.
基金supported by the National Natural Science Foundation of China (Grant No.10832011)the National Science Foundation for Postdoctoral Scientists of China (Grant No.20100470139)
文摘For surface hardening of metal,a quasi-Dammann grating (QDG) is proposed and fabricated to generate array spots with proportional-intensity distribution.To get uniformly hardened band distribution and improve the wear resistance of the sample surface,a three-order QDG is designed to produce array spots with enhanced intensity in the edge.The design and fabrication of the QDG are described in detail.The surface profile of the fabricated grating was measured,which shows that the fabrication error is less than 2%.The laser beam intensity distribution shaped by the QDG was tested by a laser beam analyzer to verify the validity of the QDG.The application of the QDG in the laser surface hardening of metal was experimentally investigated,and the results show that the hardness distribution of the modified layer and the wear resistance of the sample surface are improved significantly by using the QDG.
基金supported by the High Level Talents Introduction Project of Xinjiang Uygur Autonomous Region(No.2013)
文摘The silver (Ag) nanowire arrays with regular and uniform size were successfully fabricated inside the nanochannels of anodic aluminum oxide (AAO) template by a simple paired cell method. X-ray diffi'action (XRD) and scanning elec- tron microscopy (SEM) results indicate that the as-synthesized samples are composed of face-centered cubic structure, and the average diameter is about 60-70 nm. Transmission electron microscopy (TEM) and the corresponding fast Fourier transformation (FFT) results show that Ag nanowires have a preferred single-crystal structure. Ultravio- let-visible (UV-vis) spectrum of Ag nanowire arrays exhibits UV emission band at 383 nm which can be attributed to the transverse dipole resonance ofAg nanowire arrays. A good surface-enhanced Raman scattering (SERS) spectrum is observed by excitation with a 514.5 nm laser, and the intensity of the SERS peak is about 23 times higher than that of the normal Raman peak measured from an empty AAO template. The high enhancement factor suggests that this method can be used to fabricate SERS sensor with high efficiency.
基金supported by the National Basic Research Program of China(Grant No.2012CB626801)the National Natural Science Foundation of China(Grant No.11274057)+5 种基金the Program for New Century Excellent Talents in University(Grant No.NCET-13-0702)the Science and Technology Project of Liaoning Province(Grant No.2012222009)the Fundamental Research Funds for the Central Universities(Grant No.DC12010117)the Program for Liaoning Excellent Talents in University(LNET)(Grant No.LJQ2012112)the Science and Technique Foundation of Dalian(Grant Nos.2012J21DW016 and 2013A14GX040)the Science and Technique Foundation of Jinzhou New District(Grant No.2012-A1-051)
文摘Aluminium nanohole arrays with fixed diameter were fabricated by focused ion beam and the periodicities were turned.Aluminium nanohole arrays enhanced resonance Raman scattering spectra in the near ultraviolet region were studied experimentally and theoretically,which revealed that the SERRS enhancement factor was as high as 6 orders.
基金Project supported by the Marie Sk?odowska-Curie Individual Fellowship(H2020-MSCA-IF-2015)(No.709267)the Open Project Program of Ministry of Education Key Laboratory of Measurement and Control of Complex Systems of Engineering,Southeast University,China(No.MCCSE2017A01)
文摘Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov-Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed 'Gaussian conjugacy' in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity.