将曼哈顿世界假说(Manhattan World assumption,MW)引入室内定位问题,提出了一种改进的基于RGB-D视觉与平面特征的室内定位方案,不仅能有效提高场景匹配的成功率,还可简化未知场景下的定位问题,提高定位效率和实时性,可用于对同步定位...将曼哈顿世界假说(Manhattan World assumption,MW)引入室内定位问题,提出了一种改进的基于RGB-D视觉与平面特征的室内定位方案,不仅能有效提高场景匹配的成功率,还可简化未知场景下的定位问题,提高定位效率和实时性,可用于对同步定位与建图SLAM(SimultaneousLocalization and Mapping)系统的扩展.创新点主要体现在:针对解释树匹配的时间开销随特征数指数级上升的问题,设计了根据曼哈顿帧的主方向进行分解的匹配方法;针对单条行进路径搜索效率有待提高的问题,提出了在初始位姿确定后采用4自由度的简化定位方案;针对单帧中遍历执行子图匹配耗时较长的问题,将小范围子图合并为大范围子图后进行匹配.实验结果表明,该方案相较已有的平面特征定位方法,能缩短成功定位所需的行进距离,并显著降低单条行进路径上的平均搜索耗时.展开更多
为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的...为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的位姿估计策略并在系统中加入稠密建图线程。首先通过ORB(oriented fast and rotated brief)特征点法、最小显著性差异(least-significant difference, LSD)算法和聚集层次聚类(agglomerative hierarchical clustering, AHC)方法提取点、线、面特征,其中点、线特征与上一帧匹配,面特征在全局地图匹配。然后采用基于surfel的稠密建图策略将图像划分为非平面与平面区域,非平面采用ICP算法计算位姿,平面则通过面与面的正交关系确定曼哈顿世界从而使用不同估计策略,其中曼哈顿世界场景通过位姿解耦实现基于曼哈顿帧观测的无漂移旋转估计,而该场景的平移以及非曼哈顿世界场景的位姿采用追踪的点、线、面特征进行估计和优化;最后根据关键帧和相应位姿实现稠密建图。采用慕尼黑工业大学(technische universit?t münchen, TUM)数据集验证所提建图方法,经过与ORB-SLAM2算法比较,均方根误差平均减少0.24 cm,平均定位精度提高7.17%,验证了所提方法进行稠密建图的可行性和有效性。展开更多
文摘将曼哈顿世界假说(Manhattan World assumption,MW)引入室内定位问题,提出了一种改进的基于RGB-D视觉与平面特征的室内定位方案,不仅能有效提高场景匹配的成功率,还可简化未知场景下的定位问题,提高定位效率和实时性,可用于对同步定位与建图SLAM(SimultaneousLocalization and Mapping)系统的扩展.创新点主要体现在:针对解释树匹配的时间开销随特征数指数级上升的问题,设计了根据曼哈顿帧的主方向进行分解的匹配方法;针对单条行进路径搜索效率有待提高的问题,提出了在初始位姿确定后采用4自由度的简化定位方案;针对单帧中遍历执行子图匹配耗时较长的问题,将小范围子图合并为大范围子图后进行匹配.实验结果表明,该方案相较已有的平面特征定位方法,能缩短成功定位所需的行进距离,并显著降低单条行进路径上的平均搜索耗时.
文摘为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的位姿估计策略并在系统中加入稠密建图线程。首先通过ORB(oriented fast and rotated brief)特征点法、最小显著性差异(least-significant difference, LSD)算法和聚集层次聚类(agglomerative hierarchical clustering, AHC)方法提取点、线、面特征,其中点、线特征与上一帧匹配,面特征在全局地图匹配。然后采用基于surfel的稠密建图策略将图像划分为非平面与平面区域,非平面采用ICP算法计算位姿,平面则通过面与面的正交关系确定曼哈顿世界从而使用不同估计策略,其中曼哈顿世界场景通过位姿解耦实现基于曼哈顿帧观测的无漂移旋转估计,而该场景的平移以及非曼哈顿世界场景的位姿采用追踪的点、线、面特征进行估计和优化;最后根据关键帧和相应位姿实现稠密建图。采用慕尼黑工业大学(technische universit?t münchen, TUM)数据集验证所提建图方法,经过与ORB-SLAM2算法比较,均方根误差平均减少0.24 cm,平均定位精度提高7.17%,验证了所提方法进行稠密建图的可行性和有效性。