In this paper, we have developed a compartment of epidemic model with vaccination. We have divided the total population into five classes, namely susceptible, exposed, infective, infective in treatment and recovered c...In this paper, we have developed a compartment of epidemic model with vaccination. We have divided the total population into five classes, namely susceptible, exposed, infective, infective in treatment and recovered class. We have discussed about basic properties of the system and found the basic reproduction number (R0) of the system. The stability analysis of the model shows that the system is locally as well as globally asymptotically stable at disease-free equilibrium E0 when R0 〈1. When R0 〉1 endemic equilibrium E1 exists and the system becomes locally asymptotically stable at E1 under some conditions. We have also discussed the epidemic model with two controls, vaccination control and treatment control. An objective functional is considered which is based on a combination of minimizing the number of exposed and infective individuals and the cost of the vaccines and drugs dose. Then an optimal control pair is obtained which minimizes the objective functional. Our numerical findings are illustrated through computer simulations using MATLAB. Epidemiological implications of our analytical findings are addressed critically.展开更多
文摘In this paper, we have developed a compartment of epidemic model with vaccination. We have divided the total population into five classes, namely susceptible, exposed, infective, infective in treatment and recovered class. We have discussed about basic properties of the system and found the basic reproduction number (R0) of the system. The stability analysis of the model shows that the system is locally as well as globally asymptotically stable at disease-free equilibrium E0 when R0 〈1. When R0 〉1 endemic equilibrium E1 exists and the system becomes locally asymptotically stable at E1 under some conditions. We have also discussed the epidemic model with two controls, vaccination control and treatment control. An objective functional is considered which is based on a combination of minimizing the number of exposed and infective individuals and the cost of the vaccines and drugs dose. Then an optimal control pair is obtained which minimizes the objective functional. Our numerical findings are illustrated through computer simulations using MATLAB. Epidemiological implications of our analytical findings are addressed critically.