Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximatio...A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximations to replace the high computational simulation models. The approximating functions for stiffness and natural frequency are constructed using Taylor series approximation. Three popular approximation techniques,i.e.polynomial response surface (PRS), stepwise regression (SR), and Kriging are studied on their accuracy in the construction of side impact functions. Uniform design is employed to sample the design space of the door impact analysis. The optimization problem is solved by a multi-objective genetic algorithm. It is found that SR technique is superior to PRS and Kriging techniques in terms of accuracy in this study. The numerical results demonstrate that the method successfully generates a well-spread Pareto optimal set. From this Pareto optimal set, decision makers can select the most suitable design according to the vehicle program and its application.展开更多
Aiming to efficiently support theLocator/Identifier Separation Protocol(LISP),in this paper,we present an enhanced pointerbased DHT mapping system:LISP-PCHORD.The system creates a pointer space to build ontop of stand...Aiming to efficiently support theLocator/Identifier Separation Protocol(LISP),in this paper,we present an enhanced pointerbased DHT mapping system:LISP-PCHORD.The system creates a pointer space to build ontop of standard DHTs.Mappings within thepointer space are(Endpoint Identifiers(EID),pointers) where the pointer is the address ofthe root node(the physical node that stores themappings) of the corresponding(EID,RoutingLocators(RLOCs)) mappings.In addition toenabling architectural qualities such as scalability and reliability,the proposed LISP-PCHORDcan copy with flat EIDs such as self-certifyingEIDs.The performance of the mapping systemplays a key role in LISP;however,DHT-basedapproaches for LISP seldom consider the mismatch problem that heavily damages the system performance in terms of lookup latency.In order to mitigate the mismatch problem andachieve optimal performance,we propose anoptimization design method that seeks an optimal matching relationship between P-nodes(nodes within the pointer space) and the physical nodes on the basis of the given lookuptraffic matrix.In order to find the optimal matching relationship,we provide two solutions:a linear programming method and a geneticalgorithm.Finally,we evaluate the performance of the proposed scheme and compare itwith that of LISP-DHT.展开更多
An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is...An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is used as simple and inexpensive replacement for computationally expensive simulation model. In IRSM, the optimal design space can be reduced greatly without any prior information about function distribution. Also, by identifying the approximation error region, new design points can be supplemented correspondingly to improve the response surface model effectively. The procedure is iterated until the accuracy reaches the desired threshold value. Thus, the global optimization can be performed based on this substitute model. Finally, we present an optimization design example about roll forming of a "U" channel product.展开更多
QoS routing is one of the key technologies for providing guaranteed service in IP networks. The paper focuses on the optimization problem for bandwidth constrained QoS routing, and proposes an optimal algorithm based ...QoS routing is one of the key technologies for providing guaranteed service in IP networks. The paper focuses on the optimization problem for bandwidth constrained QoS routing, and proposes an optimal algorithm based on the global optimization of path bandwidth and hop counts. The main goal of the algorithm is to minimize the consumption of network resource, and at the same time to minimize the network congestion caused by irrational path selection. The simulation results show that our algorithm has lower call blocking rate and higher throughput than traditional algorithms.展开更多
An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear bu...An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear building structure under horizontal ground acceleration excitation is formulated and converted into that of completely observable linear structure by using separation principle. The time-delayed control forces are approximately expressed in terms of control forces without time delay. The control system is then governed by Itoe stochastic differential equations for the conditional means of system states and then transformed into those for the conditional means of modal energies by using the stochastic averaging method for quasi-Hamiltonian systems. The control law is assumed to be modal velocity feedback control with time delay and the unknown control gains are determined by the modal performance indices. A three-storey building structure is taken as example to illustrate the proposal method and the numerical results are confirmed by using Monte Carlo simulation.展开更多
For an energy-efficient induction machine, the life-cycle cost (LCC) usually is the most important index to the consumer. With this target, the optimization design of a motor is a complex nonlinear problem with constr...For an energy-efficient induction machine, the life-cycle cost (LCC) usually is the most important index to the consumer. With this target, the optimization design of a motor is a complex nonlinear problem with constraints. To solve the problem, the authors introduce a united random algorithm. At first, the problem is divided into two parts, the optimal rotor slots and the optimization of other dimensions. Before optimizing the rotor slots with genetic algorithm ( GA), the second part is solved with TABU algorithm to simplify the problem. The numerical results showed that this method is better than the method using a traditional algorithm.展开更多
A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In...A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In order to satisfy the dynamic characteristics requirement of high natural frequency and light-weight of US,a design method of multi-disciplinary optimization of NSGA-II about unit structures driven by natural frequency and mass is developed.Through analyzing the unit structures,key factors affecting the natural frequency and mass are extracted,and the mathematical models of natural frequency and mass about unit structures are also established by using central composite design and response surface model.The goal of high natural frequency and light-weight is reached by using the multi-objective genetic algorithms.The Pareto optimal set is also obtained.The dynamic behavior of US is investigated by the experimental modal analysis.To show the efficiency of the proposed novel method,the example of YKW51250 gear shaping machine bed is used.Through optimization of NSGA-II about US of YKW51250 machine bed,the natural frequency of YKW51250 gear shaping machine bed is increased by 30.4%and its mass decreased by 5.2%comparing with the original design.By studying the dynamic characteristics of the simplified machine tools bed,useful laws are obtained,and these laws can be used in primary design of NC machine tools structures.The optimal method based on US can be also applied to the dynamic optimal design of machine tools and other similar equipments.展开更多
The optimal rendezvous trajectory designs in many current research efforts do not incorporate the practical uncertainties into the closed loop of the design.A robust optimization design method for a nonlinear rendezvo...The optimal rendezvous trajectory designs in many current research efforts do not incorporate the practical uncertainties into the closed loop of the design.A robust optimization design method for a nonlinear rendezvous trajectory with uncertainty is proposed in this paper.One performance index related to the variances of the terminal state error is termed the robustness performance index,and a two-objective optimization model(including the minimum characteristic velocity and the minimum robustness performance index)is formulated on the basis of the Lambert algorithm.A multi-objective,non-dominated sorting genetic algorithm is employed to obtain the Pareto optimal solution set.It is shown that the proposed approach can be used to quickly obtain several inherent principles of the rendezvous trajectory by taking practical errors into account.Furthermore,this approach can identify the most preferable design space in which a specific solution for the actual application of the rendezvous control should be chosen.展开更多
Complicated mechanical products normally consist of multi-parameter mechanisms.The couplings between two tmechanisms are either strong or weak.The traditional optimal design methods cannot meet the requirements of opt...Complicated mechanical products normally consist of multi-parameter mechanisms.The couplings between two tmechanisms are either strong or weak.The traditional optimal design methods cannot meet the requirements of optimal structural design of the complicated multi-parameter mechanical products.On the basis of analyzing the optimal design methods and the data mining principles,an improved iterative dichotomizer 3(ID3) algorithm is hereby put forth to bring out an optimal design information model integrated with the data mining technology as well as an optimal structural design system of complicated mechanical products based on the data mining principles.The system is demonstrated by the optimal structural design of the mainframe of the full face rock tunnel boring machine(TBM).An example shows that the data mining technology has fully tackled the issues of the optimal structural design of complicated mechanical products.展开更多
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
基金Supported by National"863"Program of China (No.2006AA04Z127) .
文摘A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximations to replace the high computational simulation models. The approximating functions for stiffness and natural frequency are constructed using Taylor series approximation. Three popular approximation techniques,i.e.polynomial response surface (PRS), stepwise regression (SR), and Kriging are studied on their accuracy in the construction of side impact functions. Uniform design is employed to sample the design space of the door impact analysis. The optimization problem is solved by a multi-objective genetic algorithm. It is found that SR technique is superior to PRS and Kriging techniques in terms of accuracy in this study. The numerical results demonstrate that the method successfully generates a well-spread Pareto optimal set. From this Pareto optimal set, decision makers can select the most suitable design according to the vehicle program and its application.
基金supported by the National Key Basic Research Program of China(973Program) under Grant No.2007CB307100the National Natural Science Foundation of China under Grant No.61001084
文摘Aiming to efficiently support theLocator/Identifier Separation Protocol(LISP),in this paper,we present an enhanced pointerbased DHT mapping system:LISP-PCHORD.The system creates a pointer space to build ontop of standard DHTs.Mappings within thepointer space are(Endpoint Identifiers(EID),pointers) where the pointer is the address ofthe root node(the physical node that stores themappings) of the corresponding(EID,RoutingLocators(RLOCs)) mappings.In addition toenabling architectural qualities such as scalability and reliability,the proposed LISP-PCHORDcan copy with flat EIDs such as self-certifyingEIDs.The performance of the mapping systemplays a key role in LISP;however,DHT-basedapproaches for LISP seldom consider the mismatch problem that heavily damages the system performance in terms of lookup latency.In order to mitigate the mismatch problem andachieve optimal performance,we propose anoptimization design method that seeks an optimal matching relationship between P-nodes(nodes within the pointer space) and the physical nodes on the basis of the given lookuptraffic matrix.In order to find the optimal matching relationship,we provide two solutions:a linear programming method and a geneticalgorithm.Finally,we evaluate the performance of the proposed scheme and compare itwith that of LISP-DHT.
文摘An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is used as simple and inexpensive replacement for computationally expensive simulation model. In IRSM, the optimal design space can be reduced greatly without any prior information about function distribution. Also, by identifying the approximation error region, new design points can be supplemented correspondingly to improve the response surface model effectively. The procedure is iterated until the accuracy reaches the desired threshold value. Thus, the global optimization can be performed based on this substitute model. Finally, we present an optimization design example about roll forming of a "U" channel product.
文摘QoS routing is one of the key technologies for providing guaranteed service in IP networks. The paper focuses on the optimization problem for bandwidth constrained QoS routing, and proposes an optimal algorithm based on the global optimization of path bandwidth and hop counts. The main goal of the algorithm is to minimize the consumption of network resource, and at the same time to minimize the network congestion caused by irrational path selection. The simulation results show that our algorithm has lower call blocking rate and higher throughput than traditional algorithms.
基金the National Natural Science Foundation of China (Nos. 10332030 and 10772159)the Research Fund for theDoctoral Program of Higher Education of China (No. 20060335125)
文摘An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear building structure under horizontal ground acceleration excitation is formulated and converted into that of completely observable linear structure by using separation principle. The time-delayed control forces are approximately expressed in terms of control forces without time delay. The control system is then governed by Itoe stochastic differential equations for the conditional means of system states and then transformed into those for the conditional means of modal energies by using the stochastic averaging method for quasi-Hamiltonian systems. The control law is assumed to be modal velocity feedback control with time delay and the unknown control gains are determined by the modal performance indices. A three-storey building structure is taken as example to illustrate the proposal method and the numerical results are confirmed by using Monte Carlo simulation.
文摘For an energy-efficient induction machine, the life-cycle cost (LCC) usually is the most important index to the consumer. With this target, the optimization design of a motor is a complex nonlinear problem with constraints. To solve the problem, the authors introduce a united random algorithm. At first, the problem is divided into two parts, the optimal rotor slots and the optimization of other dimensions. Before optimizing the rotor slots with genetic algorithm ( GA), the second part is solved with TABU algorithm to simplify the problem. The numerical results showed that this method is better than the method using a traditional algorithm.
基金partially supported by the Leading Talent Project of Guangdong Province of Chinathe National Key S&T Special Projects of China on CNC machine tools and fundamental manufacturing equipments(Grant No.2010ZX04001-191 and 2011ZX04002-032)
文摘A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In order to satisfy the dynamic characteristics requirement of high natural frequency and light-weight of US,a design method of multi-disciplinary optimization of NSGA-II about unit structures driven by natural frequency and mass is developed.Through analyzing the unit structures,key factors affecting the natural frequency and mass are extracted,and the mathematical models of natural frequency and mass about unit structures are also established by using central composite design and response surface model.The goal of high natural frequency and light-weight is reached by using the multi-objective genetic algorithms.The Pareto optimal set is also obtained.The dynamic behavior of US is investigated by the experimental modal analysis.To show the efficiency of the proposed novel method,the example of YKW51250 gear shaping machine bed is used.Through optimization of NSGA-II about US of YKW51250 machine bed,the natural frequency of YKW51250 gear shaping machine bed is increased by 30.4%and its mass decreased by 5.2%comparing with the original design.By studying the dynamic characteristics of the simplified machine tools bed,useful laws are obtained,and these laws can be used in primary design of NC machine tools structures.The optimal method based on US can be also applied to the dynamic optimal design of machine tools and other similar equipments.
基金supported by the National Natural Science Foundation of China(Grant No.11222215)the National Basic Research Program of China(Grant No.2013CB733100)the Science Project of the National University of Defense Technology(Grant No.CJ12-01-02)
文摘The optimal rendezvous trajectory designs in many current research efforts do not incorporate the practical uncertainties into the closed loop of the design.A robust optimization design method for a nonlinear rendezvous trajectory with uncertainty is proposed in this paper.One performance index related to the variances of the terminal state error is termed the robustness performance index,and a two-objective optimization model(including the minimum characteristic velocity and the minimum robustness performance index)is formulated on the basis of the Lambert algorithm.A multi-objective,non-dominated sorting genetic algorithm is employed to obtain the Pareto optimal solution set.It is shown that the proposed approach can be used to quickly obtain several inherent principles of the rendezvous trajectory by taking practical errors into account.Furthermore,this approach can identify the most preferable design space in which a specific solution for the actual application of the rendezvous control should be chosen.
基金the 10th Five Years National Key Technical Equipment Development Project of China(No. ZZ02-03-03-01)
文摘Complicated mechanical products normally consist of multi-parameter mechanisms.The couplings between two tmechanisms are either strong or weak.The traditional optimal design methods cannot meet the requirements of optimal structural design of the complicated multi-parameter mechanical products.On the basis of analyzing the optimal design methods and the data mining principles,an improved iterative dichotomizer 3(ID3) algorithm is hereby put forth to bring out an optimal design information model integrated with the data mining technology as well as an optimal structural design system of complicated mechanical products based on the data mining principles.The system is demonstrated by the optimal structural design of the mainframe of the full face rock tunnel boring machine(TBM).An example shows that the data mining technology has fully tackled the issues of the optimal structural design of complicated mechanical products.