The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering...The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.展开更多
QoS routing is one of the key technologies for providing guaranteed service in IP networks. The paper focuses on the optimization problem for bandwidth constrained QoS routing, and proposes an optimal algorithm based ...QoS routing is one of the key technologies for providing guaranteed service in IP networks. The paper focuses on the optimization problem for bandwidth constrained QoS routing, and proposes an optimal algorithm based on the global optimization of path bandwidth and hop counts. The main goal of the algorithm is to minimize the consumption of network resource, and at the same time to minimize the network congestion caused by irrational path selection. The simulation results show that our algorithm has lower call blocking rate and higher throughput than traditional algorithms.展开更多
Noise and linearity performances are critical characteristics for radio frequency integrated circuits (RFICs), especially for low noise amplifiers (LNAs). In this paper, a detailed analysis of noise and linearity for ...Noise and linearity performances are critical characteristics for radio frequency integrated circuits (RFICs), especially for low noise amplifiers (LNAs). In this paper, a detailed analysis of noise and linearity for the cascode architecture, a widely used circuit structure in LNA designs, is presented. The noise and the linearity improvement techniques for cascode structures are also developed and have been proven by computer simulating experiments. Theoretical analysis and simulation results showed that, for cascode structure LNAs, the first metallic oxide semiconductor field effect transistor (MOSFET) dominates the noise performance of the LNA, while the second MOSFET contributes more to the linearity. A conclusion is thus obtained that the first and second MOSFET of the LNA can be designed to optimize the noise performance and the linearity performance separately, without trade offs. The 1.9GHz Complementary Metal Oxide Semiconductor (CMOS) LNA simulation results are also given as an application of the developed theory.展开更多
基金National natural science foundation (No:70371040)
文摘The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.
文摘QoS routing is one of the key technologies for providing guaranteed service in IP networks. The paper focuses on the optimization problem for bandwidth constrained QoS routing, and proposes an optimal algorithm based on the global optimization of path bandwidth and hop counts. The main goal of the algorithm is to minimize the consumption of network resource, and at the same time to minimize the network congestion caused by irrational path selection. The simulation results show that our algorithm has lower call blocking rate and higher throughput than traditional algorithms.
文摘Noise and linearity performances are critical characteristics for radio frequency integrated circuits (RFICs), especially for low noise amplifiers (LNAs). In this paper, a detailed analysis of noise and linearity for the cascode architecture, a widely used circuit structure in LNA designs, is presented. The noise and the linearity improvement techniques for cascode structures are also developed and have been proven by computer simulating experiments. Theoretical analysis and simulation results showed that, for cascode structure LNAs, the first metallic oxide semiconductor field effect transistor (MOSFET) dominates the noise performance of the LNA, while the second MOSFET contributes more to the linearity. A conclusion is thus obtained that the first and second MOSFET of the LNA can be designed to optimize the noise performance and the linearity performance separately, without trade offs. The 1.9GHz Complementary Metal Oxide Semiconductor (CMOS) LNA simulation results are also given as an application of the developed theory.