Based on the elastic thin plate theory,the main law of the ore roof failure was analyzed and the formula of the ore roof thickness was deduced.The results show that the tensile stress in the roof center accounts for t...Based on the elastic thin plate theory,the main law of the ore roof failure was analyzed and the formula of the ore roof thickness was deduced.The results show that the tensile stress in the roof center accounts for the roof failure.According to the limit failure conditions of the point,the formula of the ore roof thickness was derived.Taking No.10 stope of a bauxite mine as an engineering case,the optimal thickness of the ore roof was 0.36 m.The safety factor was taken as 1.3,therefore the design thickness was 0.5 m.In the whole industrial test process,the dynamic alarm devices did not start the alarm and the ore roof was not damaged.Compared with other stopes under similar conditions,its thickness was reduced by 0.1-0.3 m.The recovery rate of the ore roof was increased by 16.7%-37.5%.展开更多
To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shi...To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shimming procedure is quite complex.Therefore,an effective and reliable method in application is developed in this paper.Firstly,the best regulation of spring load is solved based on a mechanical model of the secondary suspension system,providing a target for actual adjustment.To reveal the relationship between secondary spring load distribution and shim quantity sequence,a forecasting model is constructed and then modified experimentally with consideration of car body’s elastic deformation.Further,a gradient-based algorithm with a momentum operation is proposed for the load optimization.Effectiveness of the whole method has been verified on a test rig.It is experimentally confirmed that this research provides an important basis for achieving an optimal regulation of spring load distribution for multiple types of railway vehicles.展开更多
Fiber reinforcement technology can significantly improve the mechanical properties of soil and has been increasingly applied in geotechnical engineering.Basalt fiber is a new kind of environment-friendly and highperfo...Fiber reinforcement technology can significantly improve the mechanical properties of soil and has been increasingly applied in geotechnical engineering.Basalt fiber is a new kind of environment-friendly and highperformance soil reinforcement material,and the mechanical properties of basalt fiber-reinforced soil have become a hot research topic.In this paper,we conducted monotonic triaxial and cyclic triaxial tests,and analyzed the influence of the fiber content,moisture content,and confining pressure on the shear characteristics,dynamic modulus,and damping ratio of basalt fiber-reinforced silty clay.The results illustrate that basalt fiber can enhance the shear strength of silty clay by increasing its cohesion.We find that the shear strength of reinforced silty clay reaches its maximum when the fiber content is approximately 0.2%and the moisture content is 18.5%(optimum moisture content).Similarly,we also find that the dynamic modulus that corresponds to the same strain first increases then decreases with increasing fiber content and moisture content and reaches its maximum when the fiber content is approximately 0.2%and the moisture content is 18.5%.The dynamic modulus is positively correlated with the confining pressure.However,the change in the damping ratio with fiber content,moisture content,and confining pressure is opposite to that of the dynamic modulus.It can be concluded that the optimum content of basalt fiber for use in silty clay is 0.2%.After our experiments,we used scanning electron microscope(SEM)to observe the microstructure of specimens with different fiber contents,and our results show that the gripping effect and binding effect are the main mechanisms of fiber reinforcement.展开更多
This paper studies the consignment contract with revenue sharing where the retailer offers two revenue share schemes between himself and his supplier from the viewpoint of inventory ownership: One is that the retailer...This paper studies the consignment contract with revenue sharing where the retailer offers two revenue share schemes between himself and his supplier from the viewpoint of inventory ownership: One is that the retailer takes charge of the unsold items,the other one is that the retailer returns the unsold items to the supplier at the end of the selling period,and the supplier disposes those overstockings.In each contract,the retailer deducts a percentage from the selling price for each sold item and transfers the balance to the supplier.The supplier solves a two-stage problem:She first chooses contract,then decides retail price and delivery quantity according to the terms of the contract chosen.With an iso-price-elastic demand model,the authors derive the retailer and suppliers’ optimal decisions for both schemes.In addition,the authors characterize how they are affected by disposing cost.The authors compare the decisions between the two schemes for disposing cost turn out to be holding cost or salvage value,respectively.The authors use numerical examples to show the supplier’s first-stage optimal decision depends critically on demand price elasticity,the disposing cost and the retailer’s share for channel cost.展开更多
The present paper studies time-consistent solutions to an investment-reinsurance problem under a mean-variance framework.The paper is distinguished from other literature by taking into account the interests of both an...The present paper studies time-consistent solutions to an investment-reinsurance problem under a mean-variance framework.The paper is distinguished from other literature by taking into account the interests of both an insurer and a reinsurer jointly.The claim process of the insurer is governed by a Brownian motion with a drift.A proportional reinsurance treaty is considered and the premium is calculated according to the expected value principle.Both the insurer and the reinsurer are assumed to invest in a risky asset,which is distinct for each other and driven by a constant elasticity of variance model.The optimal decision is formulated on a weighted sum of the insurer’s and the reinsurer’s surplus processes.Upon a verification theorem,which is established with a formal proof for a more general problem,explicit solutions are obtained for the proposed investment-reinsurance model.Moreover,numerous mathematical analysis and numerical examples are provided to demonstrate those derived results as well as the economic implications behind.展开更多
基金financial support from the National Key Research and Development Program of China(No.2017YFC0602901)。
文摘Based on the elastic thin plate theory,the main law of the ore roof failure was analyzed and the formula of the ore roof thickness was deduced.The results show that the tensile stress in the roof center accounts for the roof failure.According to the limit failure conditions of the point,the formula of the ore roof thickness was derived.Taking No.10 stope of a bauxite mine as an engineering case,the optimal thickness of the ore roof was 0.36 m.The safety factor was taken as 1.3,therefore the design thickness was 0.5 m.In the whole industrial test process,the dynamic alarm devices did not start the alarm and the ore roof was not damaged.Compared with other stopes under similar conditions,its thickness was reduced by 0.1-0.3 m.The recovery rate of the ore roof was increased by 16.7%-37.5%.
基金Project(51305467)supported by the National Natural Science Foundation of ChinaProject(12JJ4050)supported by the Natural Science Foundation of Hunan Province,China
文摘To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shimming procedure is quite complex.Therefore,an effective and reliable method in application is developed in this paper.Firstly,the best regulation of spring load is solved based on a mechanical model of the secondary suspension system,providing a target for actual adjustment.To reveal the relationship between secondary spring load distribution and shim quantity sequence,a forecasting model is constructed and then modified experimentally with consideration of car body’s elastic deformation.Further,a gradient-based algorithm with a momentum operation is proposed for the load optimization.Effectiveness of the whole method has been verified on a test rig.It is experimentally confirmed that this research provides an important basis for achieving an optimal regulation of spring load distribution for multiple types of railway vehicles.
基金Project(51978674) supported by the National Natural Science Foundation of ChinaProject(2017G008-A) supported by the China Railway Corporation Science and the Technology Development Project。
文摘Fiber reinforcement technology can significantly improve the mechanical properties of soil and has been increasingly applied in geotechnical engineering.Basalt fiber is a new kind of environment-friendly and highperformance soil reinforcement material,and the mechanical properties of basalt fiber-reinforced soil have become a hot research topic.In this paper,we conducted monotonic triaxial and cyclic triaxial tests,and analyzed the influence of the fiber content,moisture content,and confining pressure on the shear characteristics,dynamic modulus,and damping ratio of basalt fiber-reinforced silty clay.The results illustrate that basalt fiber can enhance the shear strength of silty clay by increasing its cohesion.We find that the shear strength of reinforced silty clay reaches its maximum when the fiber content is approximately 0.2%and the moisture content is 18.5%(optimum moisture content).Similarly,we also find that the dynamic modulus that corresponds to the same strain first increases then decreases with increasing fiber content and moisture content and reaches its maximum when the fiber content is approximately 0.2%and the moisture content is 18.5%.The dynamic modulus is positively correlated with the confining pressure.However,the change in the damping ratio with fiber content,moisture content,and confining pressure is opposite to that of the dynamic modulus.It can be concluded that the optimum content of basalt fiber for use in silty clay is 0.2%.After our experiments,we used scanning electron microscope(SEM)to observe the microstructure of specimens with different fiber contents,and our results show that the gripping effect and binding effect are the main mechanisms of fiber reinforcement.
基金supported by the National Natural Science Foundation of China under Grant Nos.70901029, 71171088,71131004 and 71002077the Fundamental Research Funds for the Universities under Grant No. 65010771
文摘This paper studies the consignment contract with revenue sharing where the retailer offers two revenue share schemes between himself and his supplier from the viewpoint of inventory ownership: One is that the retailer takes charge of the unsold items,the other one is that the retailer returns the unsold items to the supplier at the end of the selling period,and the supplier disposes those overstockings.In each contract,the retailer deducts a percentage from the selling price for each sold item and transfers the balance to the supplier.The supplier solves a two-stage problem:She first chooses contract,then decides retail price and delivery quantity according to the terms of the contract chosen.With an iso-price-elastic demand model,the authors derive the retailer and suppliers’ optimal decisions for both schemes.In addition,the authors characterize how they are affected by disposing cost.The authors compare the decisions between the two schemes for disposing cost turn out to be holding cost or salvage value,respectively.The authors use numerical examples to show the supplier’s first-stage optimal decision depends critically on demand price elasticity,the disposing cost and the retailer’s share for channel cost.
基金supported by National Natural Science Foundation of China (Grant Nos. 11301376, 71201173 and 71571195)China Scholarship Council, the Natural Sciences and Engineering Research Council of Canada (NSERC)+2 种基金Society of Actuaries Centers of Actuarial Excellence Research Grant, Guangdong Natural Science Funds for Distinguished Young Scholar (Grant No. 2015A030306040)Natural Science Foundation of Guangdong Province of China (Grant No. 2014A030310195)for Ying Tung Eduction Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 151081)
文摘The present paper studies time-consistent solutions to an investment-reinsurance problem under a mean-variance framework.The paper is distinguished from other literature by taking into account the interests of both an insurer and a reinsurer jointly.The claim process of the insurer is governed by a Brownian motion with a drift.A proportional reinsurance treaty is considered and the premium is calculated according to the expected value principle.Both the insurer and the reinsurer are assumed to invest in a risky asset,which is distinct for each other and driven by a constant elasticity of variance model.The optimal decision is formulated on a weighted sum of the insurer’s and the reinsurer’s surplus processes.Upon a verification theorem,which is established with a formal proof for a more general problem,explicit solutions are obtained for the proposed investment-reinsurance model.Moreover,numerous mathematical analysis and numerical examples are provided to demonstrate those derived results as well as the economic implications behind.