期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度神经网络复杂场景下的机器人拣选方法
被引量:
6
1
作者
韩兴
刘晓平
+1 位作者
王刚
韩松
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2019年第5期22-28,共7页
针对提高快递包裹的分拣效率和识别准确率,提出了一种基于深度神经网络复杂场景下的机器人拣选方法.首先,提出一种改进的目标检测算法,通过将多层浅层特征图与最终的特征图进行融合,提取更加细节的特征,以提升识别的速度与精度;其次,提...
针对提高快递包裹的分拣效率和识别准确率,提出了一种基于深度神经网络复杂场景下的机器人拣选方法.首先,提出一种改进的目标检测算法,通过将多层浅层特征图与最终的特征图进行融合,提取更加细节的特征,以提升识别的速度与精度;其次,提出了一种基于关键点的级联卷积最优拣选位置检测网络模型,对包裹最优拣选位置进行实时预测估计;最后,结合目标包裹最优拣选框与场景的深度信息和基于三维信息的目标姿态估计算法实现机器人拣选,并通过实验验证了该方法的有效性.
展开更多
关键词
深度神经网络
最优拣选位置
关键点检测
机器人
拣
选
原文传递
题名
基于深度神经网络复杂场景下的机器人拣选方法
被引量:
6
1
作者
韩兴
刘晓平
王刚
韩松
机构
北京邮电大学自动化学院
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2019年第5期22-28,共7页
基金
北京市科研项目(201702001)
北京邮电大学青年科研创新计划专项项目(2017RC22).
文摘
针对提高快递包裹的分拣效率和识别准确率,提出了一种基于深度神经网络复杂场景下的机器人拣选方法.首先,提出一种改进的目标检测算法,通过将多层浅层特征图与最终的特征图进行融合,提取更加细节的特征,以提升识别的速度与精度;其次,提出了一种基于关键点的级联卷积最优拣选位置检测网络模型,对包裹最优拣选位置进行实时预测估计;最后,结合目标包裹最优拣选框与场景的深度信息和基于三维信息的目标姿态估计算法实现机器人拣选,并通过实验验证了该方法的有效性.
关键词
深度神经网络
最优拣选位置
关键点检测
机器人
拣
选
Keywords
deep neural network
optimal sorting position
landmark detection
robotic sorting
分类号
TP242 [自动化与计算机技术—检测技术与自动化装置]
TP183 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于深度神经网络复杂场景下的机器人拣选方法
韩兴
刘晓平
王刚
韩松
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2019
6
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部