Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused b...Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused by traffic accidents,travel time is a random variable.In emergency situations,it is particularly necessary to determine the optimal reliable route of rescue vehicles from the perspective of uncertainty.This paper first proposes an optimal reliable path finding(ORPF)model for rescue vehicles,which considers the uncertainties of travel time,and link correlations.On this basis,it investigates how to optimize rescue vehicle allocation to minimize rescue time,taking into account travel time reliability under uncertain conditions.Because of the non-additive property of the objective function,this paper adopts a heuristic algorithm based on the K-shortest path algorithm,and inequality techniques to tackle the proposed modified integer programming model.Finally,the numerical experiments are presented to verify the accuracy and effectiveness of the proposed model and algorithm.The results show that ignoring travel time reliability may lead to an over-or under-estimation of the effective travel time of rescue vehicles on a particular path,and thereby an incorrect allocation scheme.展开更多
The objective of this paper is to investigate the dynamic characteristics of two adjacent building structures interconnected by viscoelastic dampers under seismic excitations. The computational procedure for an analyt...The objective of this paper is to investigate the dynamic characteristics of two adjacent building structures interconnected by viscoelastic dampers under seismic excitations. The computational procedure for an analytical model including the system model formulation, complex modal analysis and seismic time history analysis is presented for this purpose. A numerical example is also provided to illustrate the analytical model. The complex modal analysis is conducted to determine the optimal damping ratio, the optimal damper stiffness and the optimal damper damping of the viscoelastic dampers for each mode of the system. For the damper stiffness and damping with optimal values, the responses can be categorized into underdamped and critically damped vibrations. Furthermore, compared to the viscous dampers with only the energy dissipation mechanism, the viscoelastic dampers with both the energy dissipation and redistribution mechanisms are more effective for increasing the damping ratio of the system. The seismic time history analysis is conducted to assess the effectiveness of the viscoelastic dampers for vibration control. Based on the optimal damping ratio, the optimal damper stiffness, the optimal damper damping of the viscoelastic dampers for a certain mode of the system, and the viscoelastic dampers can be used to effectively suppress the root-mean-square responses as well as the peak responses of the two adjacent buildings.展开更多
文摘机械设备中滚动轴承复合故障的情况普遍存在。针对多种故障难分离和提取的问题,提出了基于最优参数最大相关峭度解卷积(Optimal Parameter Maxim Correlated Kurtosis Deconvolution,OPMCKD)与总体局部均值分解方法(Ensemble Local Mean Decomposition, ELMD)相结合的轴承复合故障诊断方法;首先利用排列熵值、包络谱稀疏度分别筛选MCKD中的最优滤波器长度L与冲击周期T,提取滚动轴承主故障;然后通过ELMD方法将非平稳信号分解为若干个分量,筛去主故障信息后,再次利用最优参数MCKD进行次故障诊断。通过对轴承信号的分析,验证了该方法能有效分离复合故障信号,具有一定的实用性。
基金Projects(72071202,71671184)supported by the National Natural Science Foundation of ChinaProject(22YJCZH144)supported by Humanities and Social Sciences Youth Foundation,Ministry of Education of China+3 种基金Project(2022M712680)supported by Postdoctoral Research Foundation of ChinaProject(22KJB110027)supported by Natural Science Foundation of Colleges and Universities in Jiangsu Province,ChinaProject(D2019046)supported by Initiation Foundation of Xuzhou Medical University,ChinaProject(2021SJA1079)supported by General Project of Philosophy and Social Science Research in Jiangsu Universities,China。
文摘Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused by traffic accidents,travel time is a random variable.In emergency situations,it is particularly necessary to determine the optimal reliable route of rescue vehicles from the perspective of uncertainty.This paper first proposes an optimal reliable path finding(ORPF)model for rescue vehicles,which considers the uncertainties of travel time,and link correlations.On this basis,it investigates how to optimize rescue vehicle allocation to minimize rescue time,taking into account travel time reliability under uncertain conditions.Because of the non-additive property of the objective function,this paper adopts a heuristic algorithm based on the K-shortest path algorithm,and inequality techniques to tackle the proposed modified integer programming model.Finally,the numerical experiments are presented to verify the accuracy and effectiveness of the proposed model and algorithm.The results show that ignoring travel time reliability may lead to an over-or under-estimation of the effective travel time of rescue vehicles on a particular path,and thereby an incorrect allocation scheme.
文摘The objective of this paper is to investigate the dynamic characteristics of two adjacent building structures interconnected by viscoelastic dampers under seismic excitations. The computational procedure for an analytical model including the system model formulation, complex modal analysis and seismic time history analysis is presented for this purpose. A numerical example is also provided to illustrate the analytical model. The complex modal analysis is conducted to determine the optimal damping ratio, the optimal damper stiffness and the optimal damper damping of the viscoelastic dampers for each mode of the system. For the damper stiffness and damping with optimal values, the responses can be categorized into underdamped and critically damped vibrations. Furthermore, compared to the viscous dampers with only the energy dissipation mechanism, the viscoelastic dampers with both the energy dissipation and redistribution mechanisms are more effective for increasing the damping ratio of the system. The seismic time history analysis is conducted to assess the effectiveness of the viscoelastic dampers for vibration control. Based on the optimal damping ratio, the optimal damper stiffness, the optimal damper damping of the viscoelastic dampers for a certain mode of the system, and the viscoelastic dampers can be used to effectively suppress the root-mean-square responses as well as the peak responses of the two adjacent buildings.