期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PSO的最小二乘支持向量机稀疏化算法
被引量:
3
1
作者
陈正
张小轩
+1 位作者
李慧敏
张世荣
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2016年第6期955-960,共6页
针对最小二乘支持向量机(LSSVM)失去稀疏特性及经典迭代剪切稀疏化算法容易陷入性能指标函数局部收敛的问题,提出一种基于粒子群优化(PSO)的LSSVM稀疏化算法.将LSSVM稀疏化过程描述为一个最优化问题,以校验样本和预测输出之间的均方根误...
针对最小二乘支持向量机(LSSVM)失去稀疏特性及经典迭代剪切稀疏化算法容易陷入性能指标函数局部收敛的问题,提出一种基于粒子群优化(PSO)的LSSVM稀疏化算法.将LSSVM稀疏化过程描述为一个最优化问题,以校验样本和预测输出之间的均方根误差RMSE为优化目标,以模型训练样本剪切率ε(%)为优化变量.并针对此非线性优化问题提出基于PSO的求解方法.以大型电厂飞灰含碳量LSSVM模型为例,对此算法进行了实例研究.结果表明,该方法能有效解决经典算法的局部收敛问题获得最优剪切率,具有更好的预测和泛化能力.
展开更多
关键词
最小二乘支持向量机
最优稀疏化
粒子群
优
化
算法
局部收敛
原文传递
题名
基于PSO的最小二乘支持向量机稀疏化算法
被引量:
3
1
作者
陈正
张小轩
李慧敏
张世荣
机构
武汉大学动力与机械学院
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2016年第6期955-960,共6页
基金
国家自然科学基金资助项目(编号:51475337)
湖北省自然科学基金资助项目(编号:2011CDB277)
文摘
针对最小二乘支持向量机(LSSVM)失去稀疏特性及经典迭代剪切稀疏化算法容易陷入性能指标函数局部收敛的问题,提出一种基于粒子群优化(PSO)的LSSVM稀疏化算法.将LSSVM稀疏化过程描述为一个最优化问题,以校验样本和预测输出之间的均方根误差RMSE为优化目标,以模型训练样本剪切率ε(%)为优化变量.并针对此非线性优化问题提出基于PSO的求解方法.以大型电厂飞灰含碳量LSSVM模型为例,对此算法进行了实例研究.结果表明,该方法能有效解决经典算法的局部收敛问题获得最优剪切率,具有更好的预测和泛化能力.
关键词
最小二乘支持向量机
最优稀疏化
粒子群
优
化
算法
局部收敛
Keywords
least square support vector machine (LSSVM)
optimal sparseness
particle swarm optimiza-tion (PSO)
local convergence
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于PSO的最小二乘支持向量机稀疏化算法
陈正
张小轩
李慧敏
张世荣
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2016
3
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部