为了满足电动汽车的驱动要求,达到良好的控制效果,以永磁同步电动机矢量控制技术为基础,提出了一种两后轮独立电机驱动电动汽车的电子差速控制策略,建立了其M atlab/S im u link仿真模型,同时采用混合最优PSO算法对P I参数进行了优化。...为了满足电动汽车的驱动要求,达到良好的控制效果,以永磁同步电动机矢量控制技术为基础,提出了一种两后轮独立电机驱动电动汽车的电子差速控制策略,建立了其M atlab/S im u link仿真模型,同时采用混合最优PSO算法对P I参数进行了优化。仿真结果显示,该策略能够使电机表现出很好的快速响应与平稳性,适合独立电机驱动电动汽车的驱动系统。展开更多
To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainabili...To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability.展开更多
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele...Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.展开更多
The optimal control problem of the multibody dynamics of a spacecraft in space, modeled as a central body with one-sided connected deployable solar arrays, is investigated. The dynamical equations of motion of the spa...The optimal control problem of the multibody dynamics of a spacecraft in space, modeled as a central body with one-sided connected deployable solar arrays, is investigated. The dynamical equations of motion of the spacecraft with solar arrays are derived using the multibody dynamics method. The control of the attitude motion of a spacecraft system can be transformed into the motion planning problem of nonholonomic system when the initial angular momentum is zero. These are then used to investigate the motion planning of the spacecraft during solar arrays deployment via particle swarm optimization (PSO) and results are obtained with the optimal control input and the optimal trajectory. The results of numerical simulation show that this approach is effective for the control problem of the attitude of a spacecraft during the deployment process of its solar arrays.展开更多
To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formu...To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples.展开更多
An optimal motion planning of a free-falling cat based on the spline approximation is investigated.Nonholonomicity arises in a free-falling cat subjected to nonintegrable velocity constraints or nonintegrable conserva...An optimal motion planning of a free-falling cat based on the spline approximation is investigated.Nonholonomicity arises in a free-falling cat subjected to nonintegrable velocity constraints or nonintegrable conservation laws.The equation of dynamics of a free-falling cat is obtained by using the model of two symmetric rigid bodies.The control of the system can be converted to the motion planning problem for a driftless system.A cost function is used to incorporate the final errors and control energy.The motion planning is to determine control inputs to minimize the cost function and is formulated as an infinite dimensional optimal control problem.By using the control parameterization,the infinite dimensional optimal control problem can be transformed to a finite dimensional one.The particle swarm optimization(PSO) algorithm with the cubic spline approximation is proposed to solve the finite dimension optimal control problem.The cubic spline approximation is introduced to realize the control parameterization.The resulting controls are smooth and the initial and terminal values of the control inputs are zeros,so they can be easily generated by experiment.Simulations are also performed for the nonholonomic motion planning of a free-falling cat.Simulated experimental results show that the proposed algorithm is more effective than the Newtoian algorithm.展开更多
文摘为了满足电动汽车的驱动要求,达到良好的控制效果,以永磁同步电动机矢量控制技术为基础,提出了一种两后轮独立电机驱动电动汽车的电子差速控制策略,建立了其M atlab/S im u link仿真模型,同时采用混合最优PSO算法对P I参数进行了优化。仿真结果显示,该策略能够使电机表现出很好的快速响应与平稳性,适合独立电机驱动电动汽车的驱动系统。
基金Project(51005238)supported by the National Natural Science Foundation of China
文摘To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability.
基金Project(70631004)supported by the Key Project of the National Natural Science Foundation of ChinaProject(20080440988)supported by the Postdoctoral Science Foundation of China+1 种基金Project(09JJ4030)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.
基金supported by the National Natural Science Foundation of China (Grant No. 11072038)
文摘The optimal control problem of the multibody dynamics of a spacecraft in space, modeled as a central body with one-sided connected deployable solar arrays, is investigated. The dynamical equations of motion of the spacecraft with solar arrays are derived using the multibody dynamics method. The control of the attitude motion of a spacecraft system can be transformed into the motion planning problem of nonholonomic system when the initial angular momentum is zero. These are then used to investigate the motion planning of the spacecraft during solar arrays deployment via particle swarm optimization (PSO) and results are obtained with the optimal control input and the optimal trajectory. The results of numerical simulation show that this approach is effective for the control problem of the attitude of a spacecraft during the deployment process of its solar arrays.
基金supported by the National Natural Science Foundation of China(71171015)the National High Technology Research and Development Program(863 Program)(2012AA112403)
文摘To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples.
基金supported by the National Natural Science Foundation of China (Grant No. 11072038)the Municipal Key Programs of Natural Science Foundation of Beijing,China (Grant No. KZ201110772039)
文摘An optimal motion planning of a free-falling cat based on the spline approximation is investigated.Nonholonomicity arises in a free-falling cat subjected to nonintegrable velocity constraints or nonintegrable conservation laws.The equation of dynamics of a free-falling cat is obtained by using the model of two symmetric rigid bodies.The control of the system can be converted to the motion planning problem for a driftless system.A cost function is used to incorporate the final errors and control energy.The motion planning is to determine control inputs to minimize the cost function and is formulated as an infinite dimensional optimal control problem.By using the control parameterization,the infinite dimensional optimal control problem can be transformed to a finite dimensional one.The particle swarm optimization(PSO) algorithm with the cubic spline approximation is proposed to solve the finite dimension optimal control problem.The cubic spline approximation is introduced to realize the control parameterization.The resulting controls are smooth and the initial and terminal values of the control inputs are zeros,so they can be easily generated by experiment.Simulations are also performed for the nonholonomic motion planning of a free-falling cat.Simulated experimental results show that the proposed algorithm is more effective than the Newtoian algorithm.