期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自动快速密度峰值聚类的粒子群动态优化算法
1
作者 李飞 乐强 +2 位作者 潘紫微 孙怡宁 余晓流 《计算机应用》 CSCD 北大核心 2023年第S01期154-162,共9页
针对常规多种群方法在求解动态优化问题时往往存在多样性缺失现象,提出一种基于自动快速密度峰值聚类的粒子群动态优化算法(DPCPSO)。首先,利用自动快速密度峰值聚类通过粒子的自身密度和相对距离创建无敏感参数子种群;然后,使用粒子群... 针对常规多种群方法在求解动态优化问题时往往存在多样性缺失现象,提出一种基于自动快速密度峰值聚类的粒子群动态优化算法(DPCPSO)。首先,利用自动快速密度峰值聚类通过粒子的自身密度和相对距离创建无敏感参数子种群;然后,使用粒子群优化(PSO)来寻找最优解,在搜索过程中采用停滞计数器来判断粒子是否停滞,防止种群过早收敛;最后,采用最优粒子重定位策略响应环境变化。为了验证所提出算法的性能,在移动峰值基准(MPB)和广义动态基准生成器(GDBG)测试问题上进行了仿真实验。仿真实验中,所提算法性能与基于亲和传播聚类的动态优化算法(APCPSO)、基于聚类的动态优化(CPSO)算法等其他先进算法相比较,在峰值数大于20以及变化频率为2000和3000时均取得良好的结果。实验结果表明,所提算法更适合求解多模态和快变特性的动态优化问题。 展开更多
关键词 动态化问题 多种群方法 快速密度峰值聚类 停滞检测 最优粒子重定位策略
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部