期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
执行器故障不确定非线性系统最优自适应输出跟踪控制 被引量:9
1
作者 张绍杰 吴雪 刘春生 《自动化学报》 EI CSCD 北大核心 2018年第12期2188-2197,共10页
本文针对一类具有执行器故障的多输入多输出(Multi-input multi-output, MIMO)不确定连续仿射非线性系统,提出了一种最优自适应输出跟踪控制方案.设计了保证系统稳定性的不确定项估计神经网络权值调整算法,仅采用评价网络即可同时获得... 本文针对一类具有执行器故障的多输入多输出(Multi-input multi-output, MIMO)不确定连续仿射非线性系统,提出了一种最优自适应输出跟踪控制方案.设计了保证系统稳定性的不确定项估计神经网络权值调整算法,仅采用评价网络即可同时获得无限时域代价函数和满足哈密顿–雅可比–贝尔曼(Hamilton-Jacobi-Bellman, HJB)方程的最优控制输入.考虑执行器卡死和部分失效故障,设计最优自适应补偿控制律,所设计的控制律可以实现对参考输出的一致最终有界跟踪.飞行器控制仿真和对比验证表明了本文方法的有效性和优越性. 展开更多
关键词 多输出多输出非线性系统 执行器故障 适应动态规划 最优自适应控制 输出跟踪控制 神经网络
下载PDF
铝电解预焙槽节能途径的探讨
2
作者 丁肇松 郑铁文 《有色冶金节能》 1996年第2期30-33,共4页
通过优化电解技术条件和采用智能技术,实现提高电流密度和降低槽电压,从而降低了铝电解预焙槽的单位电耗。
关键词 铝电解槽 预焙槽 节能途径 氧化铝浓度 提高电流效率 智能技术 智能诊断 最优自适应控制 槽电压 智能控制
下载PDF
Adaptive Optimal Capacity Perception and Control for Wireless Multi-Hop Networks 被引量:1
3
作者 Zhao Haitao Dong Yuning +2 位作者 Liu Nanjie Zhang Hui Tian Feng 《China Communications》 SCIE CSCD 2012年第11期23-30,共8页
In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper... In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper, we present a state-based channel capacity perception scheme to provide statistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wireless multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capacity, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a network resource and forwards the data packet by taking into consideration the channel capacity deployments in multi-terminal or multi-hop mesh networks. Extensive computer simulations demonstrate that the proposed scheme can achieve better performance in terms of packet delivery ratio and network throughput compared to the existing capacity prediction schemes. 展开更多
关键词 wireless multi-hop networks capacity perception: statistical Quality of Service (QoS) CROSS-LAYER
下载PDF
Steering control for underwater gliders 被引量:1
4
作者 You LIU Qing SHEN +1 位作者 Dong-li MA Xiang-jiang YUAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第7期898-914,共17页
Steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic char- acteristics such as payload and shape. A good choice to solve this problem is online system identifica... Steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic char- acteristics such as payload and shape. A good choice to solve this problem is online system identification via in-field trials to capture current dynamic characteristics for control law reconfiguration. Hence, an online polynomial estimator is designed to update the yaw dynamic model of the AUG, and an adaptive model predictive control (MPC) controller is used to calculate the optimal control command based on updated estimated parameters. The MPC controller uses a quadratic program (QP) to compute the optimal control command based on a user-defined cost function. The cost function has two terms, focusing on output reference tracking and move suppression of input, respectively. Move-suppression performance can, at some level, represent energy-saving performance of the MPC controller. Users can balance these two competitive control performances by tuning weights. We have compared the control performance using the second-order polynomial model to that using the filth-order polynomial model, and found that the tbrmer cannot capture the main characteristics of yaw dynamics and may result in vibration during the flight. Both processor-in-loop (PIL) simulations and in-lake tests are presented to validate our steering control performance. 展开更多
关键词 Autonomous underwater glider (AUG) Online system identification Steering control Adaptive control OPTIMALCONTROL Energy saving control Processor-in-loop (PIL)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部