Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, anothe...Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function.展开更多
By extending the system's state variables,a novel predictive functional controller has been developed.The structure of this controller is similar to that of classical proportional integral(PI)optimal controller an...By extending the system's state variables,a novel predictive functional controller has been developed.The structure of this controller is similar to that of classical proportional integral(PI)optimal controller and in-cludes a control block that can perform a feed-forward control of future P-step set points.It considers both the state variables and the output errors in its cost function,which results in enhanced control performance compared with traditional state space predictive functional control(TSSPFC)methods that consider only the predictive output er-rors.The predictive functional controller(PFC)has been compared with TSSPFC in terms of tracking ability,dis-turbance rejection,and also based on its application to heavy oil coking equipment.The results obtained show the effectiveness of the controller.展开更多
文摘Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function.
基金Supported by the National Creative Research Groups Science Foundation of China (NCRGSFC 60421002)the National High Technology Research and Development Program of China (863 Program,2006AA04Z182).
文摘By extending the system's state variables,a novel predictive functional controller has been developed.The structure of this controller is similar to that of classical proportional integral(PI)optimal controller and in-cludes a control block that can perform a feed-forward control of future P-step set points.It considers both the state variables and the output errors in its cost function,which results in enhanced control performance compared with traditional state space predictive functional control(TSSPFC)methods that consider only the predictive output er-rors.The predictive functional controller(PFC)has been compared with TSSPFC in terms of tracking ability,dis-turbance rejection,and also based on its application to heavy oil coking equipment.The results obtained show the effectiveness of the controller.