全局最优和局部最优是服务选择的两种策略.现有的全局最优服务选择算法提供端对端约束下最优单解而非可接受的多解,既无法充分体现用户偏好和服务个性,也不利于激励服务提供者优化服务质量.首先,在引入序数效用函数作为局部服务排序的...全局最优和局部最优是服务选择的两种策略.现有的全局最优服务选择算法提供端对端约束下最优单解而非可接受的多解,既无法充分体现用户偏好和服务个性,也不利于激励服务提供者优化服务质量.首先,在引入序数效用函数作为局部服务排序的数值尺度的基础上,提出一种基于多维服务质量的局部最优服务选择模型MLOMSS(Multi-QoS based Local Opti mal Model of Service Selection),为自动选取优质服务提供重要依据.然后,构造客观赋权模式、主观赋权模式和主客观赋权模式来确定各服务质量属性的权重,既体现用户偏好和服务质量的客观性,又有助于快速生成聚合服务链.最后,通过语义Web服务集成平台SEWSIP(Semantic Enable Web Serv-ice Integration Platform)证明MLOMSS模型的有效性和灵活性.展开更多
The choice of weights in frequentist model average estimators is an important but difficult problem. Liang et al. (2011) suggested a criterion for the choice of weight under a general parametric framework which is ter...The choice of weights in frequentist model average estimators is an important but difficult problem. Liang et al. (2011) suggested a criterion for the choice of weight under a general parametric framework which is termed as the generalized OPT (GOPT) criterion in the present paper. However, no properties and applications of the criterion have been studied. This paper is devoted to the further investigation of the GOPT criterion. We show that how to use this criterion for comparison of some existing weights such as the smoothed AIC-based and BIC-based weights and for the choice between model averaging and model selection. Its connection to the Mallows and ordinary OPT criteria is built. The asymptotic optimality on the criterion in the case of non-random weights is also obtained. Finite sample performance of the GOPT criterion is assessed by simulations. Application to the analysis of two real data sets is presented as well.展开更多
文摘全局最优和局部最优是服务选择的两种策略.现有的全局最优服务选择算法提供端对端约束下最优单解而非可接受的多解,既无法充分体现用户偏好和服务个性,也不利于激励服务提供者优化服务质量.首先,在引入序数效用函数作为局部服务排序的数值尺度的基础上,提出一种基于多维服务质量的局部最优服务选择模型MLOMSS(Multi-QoS based Local Opti mal Model of Service Selection),为自动选取优质服务提供重要依据.然后,构造客观赋权模式、主观赋权模式和主客观赋权模式来确定各服务质量属性的权重,既体现用户偏好和服务质量的客观性,又有助于快速生成聚合服务链.最后,通过语义Web服务集成平台SEWSIP(Semantic Enable Web Serv-ice Integration Platform)证明MLOMSS模型的有效性和灵活性.
基金supported by National Natural Science Foundation of China (Grant Nos.71101141, 70933003, 11228103, and 11271355)the Hundred Talents Program of the Chinese Academy of SciencesNational Science Foundation of United States (Grant No. DMS-1007167)
文摘The choice of weights in frequentist model average estimators is an important but difficult problem. Liang et al. (2011) suggested a criterion for the choice of weight under a general parametric framework which is termed as the generalized OPT (GOPT) criterion in the present paper. However, no properties and applications of the criterion have been studied. This paper is devoted to the further investigation of the GOPT criterion. We show that how to use this criterion for comparison of some existing weights such as the smoothed AIC-based and BIC-based weights and for the choice between model averaging and model selection. Its connection to the Mallows and ordinary OPT criteria is built. The asymptotic optimality on the criterion in the case of non-random weights is also obtained. Finite sample performance of the GOPT criterion is assessed by simulations. Application to the analysis of two real data sets is presented as well.