期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于RBPF和数据关联的多目标跟踪 被引量:4
1
作者 杨毅 吴炜 +2 位作者 杨晓敏 陈默 王正勇 《计算机工程》 CAS CSCD 北大核心 2010年第6期186-188,共3页
粒子滤波用一组带有权值的随机采样点近似后验概率密度函数,实现对任意状态模型的精确估计。把Rao-Blackwellized粒子滤波与多假设跟踪算法相结合,将多目标跟踪问题分为2个部分,即数据关联中后验概率分布的估计和基于数据关联的单个目... 粒子滤波用一组带有权值的随机采样点近似后验概率密度函数,实现对任意状态模型的精确估计。把Rao-Blackwellized粒子滤波与多假设跟踪算法相结合,将多目标跟踪问题分为2个部分,即数据关联中后验概率分布的估计和基于数据关联的单个目标跟踪估计。前者通过序列重要性重采样实现,后者使用卡尔曼滤波进行最小均方误差估计。实验结果表明,采用最优重要性分布可以减少计算所需粒子数和计算量。 展开更多
关键词 卡尔曼滤波 序列重要性重采样 Rao—Blackwellized粒子滤波 多假设跟踪 最优重要性分布
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部