Hydroxyl radicals HO are generated under Fenton-like (Fe2++H2O2→HO?+OH?+Fe3+) catalytic conditions upon microwave irradiation. Liquid-phase direct catalytic oxidation of benzene to phenol was obtained using FeSO4 sup...Hydroxyl radicals HO are generated under Fenton-like (Fe2++H2O2→HO?+OH?+Fe3+) catalytic conditions upon microwave irradiation. Liquid-phase direct catalytic oxidation of benzene to phenol was obtained using FeSO4 supported on silica gel as a solid catalyst and hydrogen peroxide as the oxidant. The effects of various parameters, such as the different solvents, the amount of solvent used, the amount of catalyst used, the reaction time, the reaction temperature and the amount of hydrogen peroxide used on the yield of phenol were studied to identify optimum reaction conditions. Conventionally heated reaction gives a phenol yield of 0.6%. A higher phenol yield of 13.9% with a selectivity of 100% is obtained when the reaction mixture was irradiated with micro-wave energy. It is concluded that microwave irradiation offers more effective control of energy input for hydroxyl radical generation that is appropriate for various synthetic reactions.展开更多
A new environmental friendly catalyst, H3PW6Mo6O40/TiO2 was prepared. The optimum conditions have been found, that is, mass ratio of m (TiO2): m (H3PW6Mo6O40) is 1:2.0, volume of water is 30 mL, the reflux react...A new environmental friendly catalyst, H3PW6Mo6O40/TiO2 was prepared. The optimum conditions have been found, that is, mass ratio of m (TiO2): m (H3PW6Mo6O40) is 1:2.0, volume of water is 30 mL, the reflux reaction time is 2 h, and activated temperature is 150 ℃. H3PW6Mo6O40/TiO2 was used as catalyst in catalytic synthesis ofacetals and ketals. Effects ofn (aldehyde(ketone)): n (glycol), catalyst dosage and reaction time on yield were investigated. Optimal conditions were: n(aldehyde (ketone)): n (glycol)=1.0 : 1.4; mass fraction of catalyst to reactants, 0.8%; reaction time, 1.0 h and cyclohexane as water-stripped reagent, 10 mL. Under these conditions, yields of acetals and ketals can reach 53.0% -86.9 0%展开更多
A new kinetic spectrophotometric method is developed for the measurement of manganese(Ⅱ) in water. The method is based on the catalytic effect of manganese(Ⅱ) with the oxidation of weak acid brilliant blue dye(RAWL)...A new kinetic spectrophotometric method is developed for the measurement of manganese(Ⅱ) in water. The method is based on the catalytic effect of manganese(Ⅱ) with the oxidation of weak acid brilliant blue dye(RAWL) by KIO4 using the Nitrilo triacetic acid(NTA) as an activation reagent. The optimum conditions obtained are 40 mgL-1 RAWL,1×10-4molL-1 KIO4,2×10-4 molL-1 Nitrilo triacetic acid(NTA),pH = 5.8,the reaction time of 3.00 min and the temperature of 20.0 ℃. Under the optimum conditions,the proposed method allows the measurement of manganese(Ⅱ) in a range of 0-50.0 ng mL-1 and with a detection limit of down to 0.158 ng mL-1. The recovery efficiency in measuring the standard manganese(Ⅱ) solution is in a range of 98.5%-102%,and the RSD is in a range of 0.76%-1.25%. The new method has been successfully applied to the measurement of manganese(Ⅱ) in both fresh water and seawater samples with satisfying results. Moreover,few cations and anions interfere with the measurement of manganese(Ⅱ). Compared with other kinetic catalytic methods and instrumental methods,the proposed method shows fairly good selectivity and sensitivity,low cost,cheapness,low detection limit and rapidity. It can be applied on boats easily.展开更多
Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral...Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral alcohol using vegetables as the biocatalyst. Acetophenone was chosen as the model substrate. The results in-dicate that acetophenone can be reduced to the corresponding chiral alcohols with high enantioselectivity by the chosen vegetables,i.e. apple(Malus pumila),carrot(Daucus carota),cucumber(Cucumis sativus),onion(Allium cepa),potato(Soanum tuberosum),radish(Raphanus sativus),and sweet potato(Ipomoea batatas) . In the reaction,R-1-phenylethanol is produced with apple,sweet potato and potato as the catalyst,while S-1-phenylethanol is the product with the other vegetables as the catalyst. In term of the enantioselectivity and reaction yield,carrot(D. ca-rota) is the best catalyst for this reaction. Furthermore,the reaction characteristics were studied in detail using car-rot(D. carota) as the biocatalyst. The effects of various factors on the reaction were investigated and the optimal reaction conditions were determined. Under the optimal reaction conditions(reaction time 50 h,substrate concen-tration 20 mmol·L-1,reaction temperature 35 °C and pH 7),95% of e.e.(to S-1-phenylethanol) and 85% chemical yield can be obtained. This work extends the biocatalyst for the asymmetric reduction reaction of prochiral aromatic ketones,and provides a novel potential route to produce enantiopure aromatic alcohols.展开更多
Chemical Manganese Dioxide (CMD) was prepared by an alkali-oxidation method. There are several virtues to this environmental friendly and clean process, including the nontoxic and harmless reagents and products, eas...Chemical Manganese Dioxide (CMD) was prepared by an alkali-oxidation method. There are several virtues to this environmental friendly and clean process, including the nontoxic and harmless reagents and products, easy operations, no pollutants, easily obtained raw materials and moderate reaction conditions. The synthesized manganese dioxide was characterized by XRD and SEM. The particles were small, consisting primarily of α-MnO2 and γ-MnO2. Experimental results showed that the optimum conditions were: MnSOa.H20 to NaOH ratio, 1.0:2.4; catalyst concentration (catalyst TF-2), 6% of the MnSO4; initial solution pH, 11; reaction time and temperature, 20 min and 80 ℃; air flow, 0.20 m3/h; and, agitation rate, 700 r/rain. The conversion of MnSO4 can exceed 80% under these optimum conditions.展开更多
Qilu Petrochemical Company in order to synchronize the replacement of catalysts in the upflow reactor (UFR) and fixed-bed reactors and achieve the 1.5-year operating cycle of the residue hydrotreating unit has revampe...Qilu Petrochemical Company in order to synchronize the replacement of catalysts in the upflow reactor (UFR) and fixed-bed reactors and achieve the 1.5-year operating cycle of the residue hydrotreating unit has revamped the UFR and optimized catalysts grading. Commercial operation results have revealed that the series of catalysts for residue hydrotreating after optimized grading achieved an operating cycle of 1.5 years with the quality of hydrotreated oil products meeting the requirements for FCC feedstock.展开更多
Catalytic activities of H3PWrMo6O40/PAn in synthesizing benzaldehyde glycol acetal were reported. It has been demonstrated that H3PW6MorO40/PAn is an excellent catalyst. Various factors concerned in the reaction have ...Catalytic activities of H3PWrMo6O40/PAn in synthesizing benzaldehyde glycol acetal were reported. It has been demonstrated that H3PW6MorO40/PAn is an excellent catalyst. Various factors concerned in the reaction have been investigated. The optimum conditions have been found, that is, the molar ratio of benzaldehyde to glycol is 1/1.4, the mass ratio of the catalyst used to the reactants is 0.8%, and the reaction time is 45min. Under these conditions, the yield of benzaldehyde glycol acetal is 79.0%.展开更多
Dehydration of bioethanol to ethylene has been investigated on supported cerium-containing catalysts and with additives of lanthanum. It was established that the modification of the 3% Ce/γ-Al2O3 catalyst by lanthanu...Dehydration of bioethanol to ethylene has been investigated on supported cerium-containing catalysts and with additives of lanthanum. It was established that the modification of the 3% Ce/γ-Al2O3 catalyst by lanthanum increases catalyst dispersion, thereby increasing yield of the main product ethylene. The highest yield of ethylene is observed on the CeLa/γ/-A12O3 catalyst under optimal conditions (space velocity: 6,000 hl, bioethanol concentration: 21.7 g/m3 and T = 400℃).展开更多
We studied the esterification of free fatty acids (FFA) in tung oil with methanol by using activated carbon treated with sulfuric acid as a catalyst, and investigated the effect of different temperatures, methanol/o...We studied the esterification of free fatty acids (FFA) in tung oil with methanol by using activated carbon treated with sulfuric acid as a catalyst, and investigated the effect of different temperatures, methanol/oil mole ratio and catalyst amount on the conversion of FFA. Results show that the optimal reaction condition is when the reaction time is 2 h, the mass fraction of the catalyst to total material is 5%, the molar ratio of menthol to FFA is 15 : 1, and the reaction temperature is 368.15 K. We also investigated the kinetics of estefification at various temperatures. Results indicate that the rate-control step could be attributed to the surface reaction, and within the range of the experimental conditions, the as-calculated kinetics formula can depict the esterification processes well.展开更多
基金supported by the National Natural Science Foundation of China (No.50921002)
文摘Hydroxyl radicals HO are generated under Fenton-like (Fe2++H2O2→HO?+OH?+Fe3+) catalytic conditions upon microwave irradiation. Liquid-phase direct catalytic oxidation of benzene to phenol was obtained using FeSO4 supported on silica gel as a solid catalyst and hydrogen peroxide as the oxidant. The effects of various parameters, such as the different solvents, the amount of solvent used, the amount of catalyst used, the reaction time, the reaction temperature and the amount of hydrogen peroxide used on the yield of phenol were studied to identify optimum reaction conditions. Conventionally heated reaction gives a phenol yield of 0.6%. A higher phenol yield of 13.9% with a selectivity of 100% is obtained when the reaction mixture was irradiated with micro-wave energy. It is concluded that microwave irradiation offers more effective control of energy input for hydroxyl radical generation that is appropriate for various synthetic reactions.
基金Acknowledgements: This work was financially supported by the Natural Science Foundation of Hubei Province, China (No. 2005ABA053) and the National Natural Science Foundation of China (No. 20471044).
文摘A new environmental friendly catalyst, H3PW6Mo6O40/TiO2 was prepared. The optimum conditions have been found, that is, mass ratio of m (TiO2): m (H3PW6Mo6O40) is 1:2.0, volume of water is 30 mL, the reflux reaction time is 2 h, and activated temperature is 150 ℃. H3PW6Mo6O40/TiO2 was used as catalyst in catalytic synthesis ofacetals and ketals. Effects ofn (aldehyde(ketone)): n (glycol), catalyst dosage and reaction time on yield were investigated. Optimal conditions were: n(aldehyde (ketone)): n (glycol)=1.0 : 1.4; mass fraction of catalyst to reactants, 0.8%; reaction time, 1.0 h and cyclohexane as water-stripped reagent, 10 mL. Under these conditions, yields of acetals and ketals can reach 53.0% -86.9 0%
文摘A new kinetic spectrophotometric method is developed for the measurement of manganese(Ⅱ) in water. The method is based on the catalytic effect of manganese(Ⅱ) with the oxidation of weak acid brilliant blue dye(RAWL) by KIO4 using the Nitrilo triacetic acid(NTA) as an activation reagent. The optimum conditions obtained are 40 mgL-1 RAWL,1×10-4molL-1 KIO4,2×10-4 molL-1 Nitrilo triacetic acid(NTA),pH = 5.8,the reaction time of 3.00 min and the temperature of 20.0 ℃. Under the optimum conditions,the proposed method allows the measurement of manganese(Ⅱ) in a range of 0-50.0 ng mL-1 and with a detection limit of down to 0.158 ng mL-1. The recovery efficiency in measuring the standard manganese(Ⅱ) solution is in a range of 98.5%-102%,and the RSD is in a range of 0.76%-1.25%. The new method has been successfully applied to the measurement of manganese(Ⅱ) in both fresh water and seawater samples with satisfying results. Moreover,few cations and anions interfere with the measurement of manganese(Ⅱ). Compared with other kinetic catalytic methods and instrumental methods,the proposed method shows fairly good selectivity and sensitivity,low cost,cheapness,low detection limit and rapidity. It can be applied on boats easily.
基金Supported by the Natural Science Foundation of Hubei Province(2008CDB354) Wuhan Youth Scientist Dawn Foundation(200750731288)
文摘Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral alcohol using vegetables as the biocatalyst. Acetophenone was chosen as the model substrate. The results in-dicate that acetophenone can be reduced to the corresponding chiral alcohols with high enantioselectivity by the chosen vegetables,i.e. apple(Malus pumila),carrot(Daucus carota),cucumber(Cucumis sativus),onion(Allium cepa),potato(Soanum tuberosum),radish(Raphanus sativus),and sweet potato(Ipomoea batatas) . In the reaction,R-1-phenylethanol is produced with apple,sweet potato and potato as the catalyst,while S-1-phenylethanol is the product with the other vegetables as the catalyst. In term of the enantioselectivity and reaction yield,carrot(D. ca-rota) is the best catalyst for this reaction. Furthermore,the reaction characteristics were studied in detail using car-rot(D. carota) as the biocatalyst. The effects of various factors on the reaction were investigated and the optimal reaction conditions were determined. Under the optimal reaction conditions(reaction time 50 h,substrate concen-tration 20 mmol·L-1,reaction temperature 35 °C and pH 7),95% of e.e.(to S-1-phenylethanol) and 85% chemical yield can be obtained. This work extends the biocatalyst for the asymmetric reduction reaction of prochiral aromatic ketones,and provides a novel potential route to produce enantiopure aromatic alcohols.
基金National Natural Science Foundation of China (No50704036)the Natural Science Foundation of Hunan Province (No08JJ3027) for their financial support
文摘Chemical Manganese Dioxide (CMD) was prepared by an alkali-oxidation method. There are several virtues to this environmental friendly and clean process, including the nontoxic and harmless reagents and products, easy operations, no pollutants, easily obtained raw materials and moderate reaction conditions. The synthesized manganese dioxide was characterized by XRD and SEM. The particles were small, consisting primarily of α-MnO2 and γ-MnO2. Experimental results showed that the optimum conditions were: MnSOa.H20 to NaOH ratio, 1.0:2.4; catalyst concentration (catalyst TF-2), 6% of the MnSO4; initial solution pH, 11; reaction time and temperature, 20 min and 80 ℃; air flow, 0.20 m3/h; and, agitation rate, 700 r/rain. The conversion of MnSO4 can exceed 80% under these optimum conditions.
文摘Qilu Petrochemical Company in order to synchronize the replacement of catalysts in the upflow reactor (UFR) and fixed-bed reactors and achieve the 1.5-year operating cycle of the residue hydrotreating unit has revamped the UFR and optimized catalysts grading. Commercial operation results have revealed that the series of catalysts for residue hydrotreating after optimized grading achieved an operating cycle of 1.5 years with the quality of hydrotreated oil products meeting the requirements for FCC feedstock.
基金Acknowledgements: This work was financially supported by the Natural Science Foundation of Hubei Province, China (No. 2005ABA053) and Hubei Key Laboratory of Bioanalytical Technique.
文摘Catalytic activities of H3PWrMo6O40/PAn in synthesizing benzaldehyde glycol acetal were reported. It has been demonstrated that H3PW6MorO40/PAn is an excellent catalyst. Various factors concerned in the reaction have been investigated. The optimum conditions have been found, that is, the molar ratio of benzaldehyde to glycol is 1/1.4, the mass ratio of the catalyst used to the reactants is 0.8%, and the reaction time is 45min. Under these conditions, the yield of benzaldehyde glycol acetal is 79.0%.
文摘Dehydration of bioethanol to ethylene has been investigated on supported cerium-containing catalysts and with additives of lanthanum. It was established that the modification of the 3% Ce/γ-Al2O3 catalyst by lanthanum increases catalyst dispersion, thereby increasing yield of the main product ethylene. The highest yield of ethylene is observed on the CeLa/γ/-A12O3 catalyst under optimal conditions (space velocity: 6,000 hl, bioethanol concentration: 21.7 g/m3 and T = 400℃).
文摘We studied the esterification of free fatty acids (FFA) in tung oil with methanol by using activated carbon treated with sulfuric acid as a catalyst, and investigated the effect of different temperatures, methanol/oil mole ratio and catalyst amount on the conversion of FFA. Results show that the optimal reaction condition is when the reaction time is 2 h, the mass fraction of the catalyst to total material is 5%, the molar ratio of menthol to FFA is 15 : 1, and the reaction temperature is 368.15 K. We also investigated the kinetics of estefification at various temperatures. Results indicate that the rate-control step could be attributed to the surface reaction, and within the range of the experimental conditions, the as-calculated kinetics formula can depict the esterification processes well.