[ Objective ]The aim of this study was to discuss the feasibility of breeding cabbage with high Vc by 532 nm laser.[ Method ] With the material of cabbage, the embryo of cabbage seeds was irradiated by frequency doubl...[ Objective ]The aim of this study was to discuss the feasibility of breeding cabbage with high Vc by 532 nm laser.[ Method ] With the material of cabbage, the embryo of cabbage seeds was irradiated by frequency doubled Nd :YAG laser with different power densities and time, and the effects of laser mode on functional leaf area, chlorophyll and Vc contents in cabbage seedlings were also studied. [Result] The results showed that functional leaf area and chlorophyll content were related to laser power density and time when laser power density was 2 -20 mW/mm^2, while the optimal effect was observed at 14 mW/mm^2 for 1 min. The content of Vc in cabbage seedlings was related to dosage of laser irradiation when irradiating time ranged from 1 to 5 min, and the optimal effect was observed at 2.8 J (20 mW/mm^2, 3 min). [Conclusion] Irradiating the embryo of cabbage seeds with proper irradiation dosage of 532 nm laser can increase its effect on the Vc content significantly.展开更多
Multi-lasers are proposed to enhance the proton acceleration in laser plasma interaction. A rear-holed target is illuminated by three lasers from different directions. The scheme is demonstrated by two-dimensional par...Multi-lasers are proposed to enhance the proton acceleration in laser plasma interaction. A rear-holed target is illuminated by three lasers from different directions. The scheme is demonstrated by two-dimensional particlein-cell simulations. The electron cloud shape is controlled well and the electron density is improved significantly. The electrons accelerated by the three lasers induce an enhanced target normal sheath acceleration(TNSA) which suppresses the proton beam divergence and improves the maximum proton energy. The maximum proton energy is 22.9 Me V, which increased significantly than that of a single-laser target interaction. Meanwhile, the average divergence angle(22.3?) is reduced. The dependence of the proton beam on the length of sidewall is investigated in detail and the optimal length is obtained.展开更多
基金Supported by Fund from Jilin Provincial Science & Technology Department(20090541)Project from Department of Education ofJilin Province(200828)~~
文摘[ Objective ]The aim of this study was to discuss the feasibility of breeding cabbage with high Vc by 532 nm laser.[ Method ] With the material of cabbage, the embryo of cabbage seeds was irradiated by frequency doubled Nd :YAG laser with different power densities and time, and the effects of laser mode on functional leaf area, chlorophyll and Vc contents in cabbage seedlings were also studied. [Result] The results showed that functional leaf area and chlorophyll content were related to laser power density and time when laser power density was 2 -20 mW/mm^2, while the optimal effect was observed at 14 mW/mm^2 for 1 min. The content of Vc in cabbage seedlings was related to dosage of laser irradiation when irradiating time ranged from 1 to 5 min, and the optimal effect was observed at 2.8 J (20 mW/mm^2, 3 min). [Conclusion] Irradiating the embryo of cabbage seeds with proper irradiation dosage of 532 nm laser can increase its effect on the Vc content significantly.
文摘Multi-lasers are proposed to enhance the proton acceleration in laser plasma interaction. A rear-holed target is illuminated by three lasers from different directions. The scheme is demonstrated by two-dimensional particlein-cell simulations. The electron cloud shape is controlled well and the electron density is improved significantly. The electrons accelerated by the three lasers induce an enhanced target normal sheath acceleration(TNSA) which suppresses the proton beam divergence and improves the maximum proton energy. The maximum proton energy is 22.9 Me V, which increased significantly than that of a single-laser target interaction. Meanwhile, the average divergence angle(22.3?) is reduced. The dependence of the proton beam on the length of sidewall is investigated in detail and the optimal length is obtained.