运动恢复结构算法(structure from motion, SfM)是一种通过计算图像匹配关系,恢复出相机位姿和目标三维结构的重建算法。提出一种基于赋权视角连接图的增量式运动恢复结构算法。首先建立基于图像对立体匹配质量的赋权连接图,量化了图像...运动恢复结构算法(structure from motion, SfM)是一种通过计算图像匹配关系,恢复出相机位姿和目标三维结构的重建算法。提出一种基于赋权视角连接图的增量式运动恢复结构算法。首先建立基于图像对立体匹配质量的赋权连接图,量化了图像两两之间的匹配关系;其次在赋权连接图中边的权重的基础上,搜索度数感知的最佳初始种子对;最后根据已重建顶点的连通性构建下一张最佳图像候选集,设计了基于顶点度数与特征点分布的下一张最佳图像评价算法。在公开数据集上实验结果显示,本文算法在重建质量、相机校准率和点云生成数量的表现优于现有先进的运动恢复结构算法,相比基准对比算法,本文算法在不同数据集上平均重建耗时至少降低了19%,点云生成速率至少提升了21%。展开更多
A learning-based deformable registration method was presented for MR brain images. First, best geometric features are selected for each location and each resolution, in order to reduce ambiguity in matching during ima...A learning-based deformable registration method was presented for MR brain images. First, best geometric features are selected for each location and each resolution, in order to reduce ambiguity in matching during image registration. The best features are obtained by solving an energy minimization problem, which requires the features to be distinctive around the neighboring points and consistency across training samples. Secondly, the set of active points is hierarchically selected based on their saliency and consistency measurements during registration, which helps to produce accurate registration results. Finally, by incorporating those learned results into the framework of HAMMER, great improvement in both real data and simulated data is achieved.展开更多
This letter exploits fundamental characteristics of a wavelet transform image to form a progressive octave-based spatial resolution. Each wavelet subband is coded based on zeroblock and quardtree partitioning ordering...This letter exploits fundamental characteristics of a wavelet transform image to form a progressive octave-based spatial resolution. Each wavelet subband is coded based on zeroblock and quardtree partitioning ordering scheme with memory optimization technique. The method proposed in this letter is of low complexity and efficient for Internet plug-in software.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.60073043 70071042+2 种基金60133010 60204001 (国家自然科学基金) the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No.02C640 (湖南省教育
文摘运动恢复结构算法(structure from motion, SfM)是一种通过计算图像匹配关系,恢复出相机位姿和目标三维结构的重建算法。提出一种基于赋权视角连接图的增量式运动恢复结构算法。首先建立基于图像对立体匹配质量的赋权连接图,量化了图像两两之间的匹配关系;其次在赋权连接图中边的权重的基础上,搜索度数感知的最佳初始种子对;最后根据已重建顶点的连通性构建下一张最佳图像候选集,设计了基于顶点度数与特征点分布的下一张最佳图像评价算法。在公开数据集上实验结果显示,本文算法在重建质量、相机校准率和点云生成数量的表现优于现有先进的运动恢复结构算法,相比基准对比算法,本文算法在不同数据集上平均重建耗时至少降低了19%,点云生成速率至少提升了21%。
基金National Natural Science Foundation of China(No.60271033)
文摘A learning-based deformable registration method was presented for MR brain images. First, best geometric features are selected for each location and each resolution, in order to reduce ambiguity in matching during image registration. The best features are obtained by solving an energy minimization problem, which requires the features to be distinctive around the neighboring points and consistency across training samples. Secondly, the set of active points is hierarchically selected based on their saliency and consistency measurements during registration, which helps to produce accurate registration results. Finally, by incorporating those learned results into the framework of HAMMER, great improvement in both real data and simulated data is achieved.
文摘This letter exploits fundamental characteristics of a wavelet transform image to form a progressive octave-based spatial resolution. Each wavelet subband is coded based on zeroblock and quardtree partitioning ordering scheme with memory optimization technique. The method proposed in this letter is of low complexity and efficient for Internet plug-in software.