期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
新能源接入下配电网电能损耗控制方法研究
1
作者 章姝俊 陆海清 赵扉 《电网与清洁能源》 CSCD 北大核心 2024年第10期115-121,131,共8页
考虑新能源接入电网后发电方式不匹配而导致电能损耗较大的问题,提出了一种电能损耗控制方法。依据配电网网损计算结果,分析在新能源接入时影响电能意外损耗的相关因素;获取配电网电能损耗最佳控制目标函数,制定控制约束条件,构建配电... 考虑新能源接入电网后发电方式不匹配而导致电能损耗较大的问题,提出了一种电能损耗控制方法。依据配电网网损计算结果,分析在新能源接入时影响电能意外损耗的相关因素;获取配电网电能损耗最佳控制目标函数,制定控制约束条件,构建配电网的电能损耗最佳控制模型;利用粒子群算法求解控制模型,获取电能损耗最佳控制值,实现配电网在新能源发电接入下的电能损耗控制。实验结果表明,使用该方法开展电能损耗控制时,可以将输电线路首端有功功率和无功功率的损耗控制在期待范围内。 展开更多
关键词 新能源接入 配电网 电能损耗 控制方法 粒子群算法 目标函数 最佳控制值
下载PDF
Optimal Switching Control for Nonlinear Systems in A Finite Duration
2
作者 MU Xiao-wu LIU Hai-jun 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第2期185-195,共11页
This paper proposes a optimal control problem for a general nonlinear systems with finitely many admissible control settings and with costs assigned to switching of controls. With dynamic programming and viscosity sol... This paper proposes a optimal control problem for a general nonlinear systems with finitely many admissible control settings and with costs assigned to switching of controls. With dynamic programming and viscosity solution theory we show that the switching lower-value function is a viscosity solution of the appropriate systems of quasi-variational inequalities(the appropriate generalization of the Hamilton-Jacobi equation in this context) and that the minimal such switching-storage function is equal to the continuous switching lower-value for the game. With the lower value function a optimal switching control is designed for minimizing the cost of running the systems. 展开更多
关键词 switching systems optimal control viscosity solution value function cost function
下载PDF
THE INVERSE PROBLEM OF OPTIMAL REGULATORS AND ITS AP-PLICATION
3
作者 HE Xiufeng CHEN Yongqi HU Shousong 《Geo-Spatial Information Science》 2000年第1期62-65,共4页
This paper presents a new solution to the inverse problem of linear optimal regulators to minimize a cost function and meet the requirements of relative stability in the presence of a constant but unknown disturbance.... This paper presents a new solution to the inverse problem of linear optimal regulators to minimize a cost function and meet the requirements of relative stability in the presence of a constant but unknown disturbance. A state feedback matrix is developed using Lyapunov’s second method. Moreover, the relationships between the state feedback matrix and the cost function are obtained, and a formula to solve the weighting matrices is suggest- ed. The developed method is applied successfully to design the horizontal loops in the inertial navigation system. 展开更多
关键词 REGULATOR optimal control Lyapunov’s second method pole assignment stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部