改舱客机通过减小座椅排距增加客舱座位数,为航空公司带来经济效益,但座椅排距的改变使原有的地面空调送风方式已不适用于改舱客机,容易导致客舱内的热舒适性不佳。针对此问题建立了改舱后的波音737客舱仿真模型,并通过实验舱验证了仿...改舱客机通过减小座椅排距增加客舱座位数,为航空公司带来经济效益,但座椅排距的改变使原有的地面空调送风方式已不适用于改舱客机,容易导致客舱内的热舒适性不佳。针对此问题建立了改舱后的波音737客舱仿真模型,并通过实验舱验证了仿真模型的准确性。基于合理的改舱模型,模拟分析了客舱内的温度场、风速场,考虑到改舱导致的客舱内部流场分布不均匀的问题,提出以预测平均投票(Predicted Mean Vote,PMV)和吹风感指数(Draft Rate,DR)作为热舒适性评价指标,构建评价函数综合评价改舱后的热舒适性,求解得出满足热舒适性要求的改舱客机最佳送风速度。该方法为改舱客机的热舒适性控制提供参考。展开更多
文摘改舱客机通过减小座椅排距增加客舱座位数,为航空公司带来经济效益,但座椅排距的改变使原有的地面空调送风方式已不适用于改舱客机,容易导致客舱内的热舒适性不佳。针对此问题建立了改舱后的波音737客舱仿真模型,并通过实验舱验证了仿真模型的准确性。基于合理的改舱模型,模拟分析了客舱内的温度场、风速场,考虑到改舱导致的客舱内部流场分布不均匀的问题,提出以预测平均投票(Predicted Mean Vote,PMV)和吹风感指数(Draft Rate,DR)作为热舒适性评价指标,构建评价函数综合评价改舱后的热舒适性,求解得出满足热舒适性要求的改舱客机最佳送风速度。该方法为改舱客机的热舒适性控制提供参考。