期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
中国科研院校文科科研实力的量化分析与比较——基于文科三大文摘2011~2015年数据 被引量:1
1
作者 涂阳军 宋雅欣 汤舒俊 《大学教育科学》 CSSCI 北大核心 2016年第5期15-21,123,共7页
科研成果评价是科研院校绩效评价中最重要的内容之一,与理工科相比,文科科研评价体系尚待完善,且文科科研成果评价中往往更重数量不重质量或影响力。本研究采用量化统计分析法,系统收集了近五年各科研院校被《新华文摘》、《中国社会科... 科研成果评价是科研院校绩效评价中最重要的内容之一,与理工科相比,文科科研评价体系尚待完善,且文科科研成果评价中往往更重数量不重质量或影响力。本研究采用量化统计分析法,系统收集了近五年各科研院校被《新华文摘》、《中国社会科学文摘》和《高等学校文科学术文摘》收录的论文,深入探究了各科研院校文科科研实力的现状、发展趋势并进行了系统比较。结果发现:少数几所文科强校长期占据三大文摘收录论文前10位,且五年间未发生任何明显变化。中国科研院校文科科研实力出现了明显分层,表现为综合类院校(传统文科强校)、师范类院校、各社会科学研究院、理工类—文艺体育类—政法、语言类—农林—医药类院校的阶梯格局,其中各社会科学研究院的文科科研实力不容小视。对想大力发展文科的科研院校在时间准备、政策连续性及奖励标准方面提出了针对性建议。 展开更多
关键词 文科 科研实力 三大文摘 最化评估 中国科研院校
下载PDF
A NEW RECURSIVE ALGORITHM FOR MULTIUSER DETECTION
2
作者 Wang Lei Zheng Baoyu +1 位作者 Li Lei Chen Chao 《Journal of Electronics(China)》 2009年第3期312-317,共6页
Based on the synthesis and analysis of recursive receivers, a new algorithm, namely partial grouping maximization likelihood algorithm, is proposed to achieve satisfactory performance with moderate computational compl... Based on the synthesis and analysis of recursive receivers, a new algorithm, namely partial grouping maximization likelihood algorithm, is proposed to achieve satisfactory performance with moderate computational complexity.During the analysis, some interesting properties shared by the proposed procedures are described.Finally, the performance assessment shows that the new scheme is superior to the linear detector and ordinary grouping algorithm, and achieves a bit-error rate close to that of the optimum receiver. 展开更多
关键词 Maximization likelihood Iterative detection Multi-user detection Partial groupingmaximization likelihood
下载PDF
Minimum Regret Climate Policy with Act-Then-Learn Decision-A New Model Framework under Long-Term Uncertainties
3
作者 Shunsuke Mori Takehiko Matsuo Masashi Ohkura 《Journal of Energy and Power Engineering》 2013年第6期1106-1115,共10页
The technology investment strategy under uncertainty is the key subject. However, the expected utility maximization often employed as the decision process fails to consider the high risk with low probability cases. On... The technology investment strategy under uncertainty is the key subject. However, the expected utility maximization often employed as the decision process fails to consider the high risk with low probability cases. On the other hand, the existing min-max regret strategy tends to be dominated by the "worst assumption" regardless of its probability. This research proposes a new framework by formulating the regret by the Minkowski's generalized distance. The authors then apply the formulation to the IAM (integrated assessment model) MARIA. This study focuses on the uncertainties of CCS (carbon capture and storage) costs and the global warming damages. This formulation is then extended to the multi-stage decision frame, known as ATL (act-then-learn) method. The simulation results suggest that the substantial changes in CCS and nuclear deployment strategies depending on the future uncertainty scenarios. The results also suggest that the minimum regret strategy favors the capital accumulation in the early stage. 展开更多
关键词 Decision under uncertainty min-max regret strategy global warming CCS IAM.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部