The environment of the wireless communication system in the coal mine has unique characteristics: great noise, strong multiple path interference, and the wireless communication of orthogonal frequency division multip...The environment of the wireless communication system in the coal mine has unique characteristics: great noise, strong multiple path interference, and the wireless communication of orthogonal frequency division multiplexing (OFDM) in underground coal mine is sensitive to the frequency selection of multiple path fading channel, whose decoding is separated from the traditional channel estimation algorithm. In order to increase its accuracy and reliability, a new iterating channel estimation algorithm combining the logarithm likelihood ratio (LLR) decode iterate based on the maximum likelihood estimation (ML) is proposed in this paper, which estimates iteration channel in combination with LLR decode. Without estimating the channel noise power, it exchanges the information between the ML channel estimation and the LLR decode using the feedback information of LLR decode. The decoding speed is very quick, and the satisfied result will be obtained by iterating in some time. The simulation results of the shortwave broadband channel in the coal mine show that the error rate of the system is basically convergent after the iteration in two times.展开更多
文摘The environment of the wireless communication system in the coal mine has unique characteristics: great noise, strong multiple path interference, and the wireless communication of orthogonal frequency division multiplexing (OFDM) in underground coal mine is sensitive to the frequency selection of multiple path fading channel, whose decoding is separated from the traditional channel estimation algorithm. In order to increase its accuracy and reliability, a new iterating channel estimation algorithm combining the logarithm likelihood ratio (LLR) decode iterate based on the maximum likelihood estimation (ML) is proposed in this paper, which estimates iteration channel in combination with LLR decode. Without estimating the channel noise power, it exchanges the information between the ML channel estimation and the LLR decode using the feedback information of LLR decode. The decoding speed is very quick, and the satisfied result will be obtained by iterating in some time. The simulation results of the shortwave broadband channel in the coal mine show that the error rate of the system is basically convergent after the iteration in two times.