泥石流浆体的黏度是泥石流运动模型中的重要参数。利用相对黏度-颗粒体积分数的计算方法得到浆体黏度需要最大体积分数这一关键参数。本文利用不同来源泥石流堆积物中的细颗粒部分配置浆体开展流变实验,研究最大体积分数的确定方法。首...泥石流浆体的黏度是泥石流运动模型中的重要参数。利用相对黏度-颗粒体积分数的计算方法得到浆体黏度需要最大体积分数这一关键参数。本文利用不同来源泥石流堆积物中的细颗粒部分配置浆体开展流变实验,研究最大体积分数的确定方法。首先利用Anton Paar MCR301流变仪的同心圆筒系统测量每个细颗粒土体在不同颗粒体积分数下的流变曲线,通过宾汉模型得到各样品的塑性黏度,进而计算其与同温度下清水的相对黏度。然后利用6个应用较为广泛的相对黏度-颗粒体积分数计算方法对实验数据进行拟合,对各方法拟合的最大体积分数进行比较,分析其与细颗粒土体的特征体积分数(随机疏松堆积体积分数、随机密实堆积体积分数、击实体积分数、沉积稳定体积分数)的关系。结果显示对于同一土体配置的浆体,不同计算方法拟合的最大体积分数有所不同,但是同一种方法得到的不同土体的最大体积分数与土体的击实体积分数存在显著的线性关系,据此建立了各计算方法中最大体积分数的经验计算式。此外还建立了浆体相对黏度与颗粒体积分数、击实体积分数之间的指数关系式,该式可用于估算中等浓度和高浓度浆体与清水的相对黏度。展开更多
The present work is concerned with the analysis of an axi-symmetric flow of blood through coaxial tubes where the outer tube has an axially symmetric mild stenosis and the inner tube has a balloon which is axi-symmetr...The present work is concerned with the analysis of an axi-symmetric flow of blood through coaxial tubes where the outer tube has an axially symmetric mild stenosis and the inner tube has a balloon which is axi-symmetric in nature. The mild stenosis approximation is used to solve the present problem. The effect of the volume fraction density of the particles, the maximum height attained by the balloon, the radius of the inner tube, which keeps the balloon in position k, and the axial displacement of the balloon have been studied. Flow parameters such as the resistive impedance, the wall shear stress distribution in the stenotic region and its magnitude at the stenosis throat have been computed for different parameters. It is observed that the resistance to flow decreases with increasing values of the axial displacement of the balloon, while the resistance to flow increases with the volume fraction density of the particles, the radius of the inner tube, which keeps the balloon in position k, and the maximum height attained by the balloon. The wall shear stress distribution in the stenotic region possesses a character similar to the resistance to flow with respect to any parameter.展开更多
文摘泥石流浆体的黏度是泥石流运动模型中的重要参数。利用相对黏度-颗粒体积分数的计算方法得到浆体黏度需要最大体积分数这一关键参数。本文利用不同来源泥石流堆积物中的细颗粒部分配置浆体开展流变实验,研究最大体积分数的确定方法。首先利用Anton Paar MCR301流变仪的同心圆筒系统测量每个细颗粒土体在不同颗粒体积分数下的流变曲线,通过宾汉模型得到各样品的塑性黏度,进而计算其与同温度下清水的相对黏度。然后利用6个应用较为广泛的相对黏度-颗粒体积分数计算方法对实验数据进行拟合,对各方法拟合的最大体积分数进行比较,分析其与细颗粒土体的特征体积分数(随机疏松堆积体积分数、随机密实堆积体积分数、击实体积分数、沉积稳定体积分数)的关系。结果显示对于同一土体配置的浆体,不同计算方法拟合的最大体积分数有所不同,但是同一种方法得到的不同土体的最大体积分数与土体的击实体积分数存在显著的线性关系,据此建立了各计算方法中最大体积分数的经验计算式。此外还建立了浆体相对黏度与颗粒体积分数、击实体积分数之间的指数关系式,该式可用于估算中等浓度和高浓度浆体与清水的相对黏度。
文摘The present work is concerned with the analysis of an axi-symmetric flow of blood through coaxial tubes where the outer tube has an axially symmetric mild stenosis and the inner tube has a balloon which is axi-symmetric in nature. The mild stenosis approximation is used to solve the present problem. The effect of the volume fraction density of the particles, the maximum height attained by the balloon, the radius of the inner tube, which keeps the balloon in position k, and the axial displacement of the balloon have been studied. Flow parameters such as the resistive impedance, the wall shear stress distribution in the stenotic region and its magnitude at the stenosis throat have been computed for different parameters. It is observed that the resistance to flow decreases with increasing values of the axial displacement of the balloon, while the resistance to flow increases with the volume fraction density of the particles, the radius of the inner tube, which keeps the balloon in position k, and the maximum height attained by the balloon. The wall shear stress distribution in the stenotic region possesses a character similar to the resistance to flow with respect to any parameter.