针对稀疏编码方法中编码过程不稳定和金字塔匹配的划分方法无法使得融合后的特征很稀疏这两个问题,提出基于平均区域划分的Laplacian稀疏编码LSCARD(Laplacian sparse coding based on average region division)的图像分类方法。首先,...针对稀疏编码方法中编码过程不稳定和金字塔匹配的划分方法无法使得融合后的特征很稀疏这两个问题,提出基于平均区域划分的Laplacian稀疏编码LSCARD(Laplacian sparse coding based on average region division)的图像分类方法。首先,对原始图像进行局部不变特征转化(SIFT)特征提取;然后,在稀疏编码方法中加入Laplacian正则化对局部特征进行编码,使相似的特征具有相似的码字;再利用平均区域划分以及最大值融合将编码后的特征向量进行融合;最后,采用多类SVM分类器对图像进行分类。在几个标准图像数据集上的实验结果表明,LSCARD算法具有更高的分类精度。展开更多
文摘针对稀疏编码方法中编码过程不稳定和金字塔匹配的划分方法无法使得融合后的特征很稀疏这两个问题,提出基于平均区域划分的Laplacian稀疏编码LSCARD(Laplacian sparse coding based on average region division)的图像分类方法。首先,对原始图像进行局部不变特征转化(SIFT)特征提取;然后,在稀疏编码方法中加入Laplacian正则化对局部特征进行编码,使相似的特征具有相似的码字;再利用平均区域划分以及最大值融合将编码后的特征向量进行融合;最后,采用多类SVM分类器对图像进行分类。在几个标准图像数据集上的实验结果表明,LSCARD算法具有更高的分类精度。