在局部阴影条件下,常规的最大功率点跟踪MPPT(maximum power point tracking)算法因含有容易陷入局部极值、跟踪精度低等弊端,使其无法及时、精确地跟踪光伏发电系统的最大功率点,因此,提出了一种基于改进型鲸鱼优化算法的光伏发电系统M...在局部阴影条件下,常规的最大功率点跟踪MPPT(maximum power point tracking)算法因含有容易陷入局部极值、跟踪精度低等弊端,使其无法及时、精确地跟踪光伏发电系统的最大功率点,因此,提出了一种基于改进型鲸鱼优化算法的光伏发电系统MPPT控制策略。首先,采用混沌映射初始化种群,增加种群的多样性。其次,通过引入非线性收敛因子使局部寻优能力和全局搜索能力达到均衡。最后,通过引入非线性时变的自适应权重使系统及时跳出局部最优解,并提高搜索的精度。经仿真验证,与粒子群优化算法、狮群优化算法、传统的鲸鱼优化算法等相比,改进的鲸鱼算法在跟踪速度、精度、稳定性等方面均有更显著的效果。展开更多
文摘在局部阴影条件下,常规的最大功率点跟踪MPPT(maximum power point tracking)算法因含有容易陷入局部极值、跟踪精度低等弊端,使其无法及时、精确地跟踪光伏发电系统的最大功率点,因此,提出了一种基于改进型鲸鱼优化算法的光伏发电系统MPPT控制策略。首先,采用混沌映射初始化种群,增加种群的多样性。其次,通过引入非线性收敛因子使局部寻优能力和全局搜索能力达到均衡。最后,通过引入非线性时变的自适应权重使系统及时跳出局部最优解,并提高搜索的精度。经仿真验证,与粒子群优化算法、狮群优化算法、传统的鲸鱼优化算法等相比,改进的鲸鱼算法在跟踪速度、精度、稳定性等方面均有更显著的效果。