针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)...针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)算法与扰动观察P&O(perturbation and observation)法混合控制的光伏系统最大功率跟踪策略。SFO算法同时使用旗鱼(捕食者)和沙丁鱼(猎物)2个种群,可保证粒子在全局空间探索。所提混合算法先利用SFO算法快速跟踪到最大功率点附近,再利用小步长P&O法对最大功率点进行精细搜索,最后利用分段步长的方法同时兼顾MPPT搜索速度和搜索精度的要求。仿真结果表明,所提混合控制策略有效提升了控制系统的响应速度及跟踪精度,提升了系统的稳定性。展开更多
实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群...实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。展开更多
针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提...针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。展开更多
文摘针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)算法与扰动观察P&O(perturbation and observation)法混合控制的光伏系统最大功率跟踪策略。SFO算法同时使用旗鱼(捕食者)和沙丁鱼(猎物)2个种群,可保证粒子在全局空间探索。所提混合算法先利用SFO算法快速跟踪到最大功率点附近,再利用小步长P&O法对最大功率点进行精细搜索,最后利用分段步长的方法同时兼顾MPPT搜索速度和搜索精度的要求。仿真结果表明,所提混合控制策略有效提升了控制系统的响应速度及跟踪精度,提升了系统的稳定性。
文摘实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。
基金supported by National Natural Science Foundation of China(No.52067013)Natural Science Foundation of Gansu Province(No.21JR7RA280)。
文摘针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。