针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)...针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)算法与扰动观察P&O(perturbation and observation)法混合控制的光伏系统最大功率跟踪策略。SFO算法同时使用旗鱼(捕食者)和沙丁鱼(猎物)2个种群,可保证粒子在全局空间探索。所提混合算法先利用SFO算法快速跟踪到最大功率点附近,再利用小步长P&O法对最大功率点进行精细搜索,最后利用分段步长的方法同时兼顾MPPT搜索速度和搜索精度的要求。仿真结果表明,所提混合控制策略有效提升了控制系统的响应速度及跟踪精度,提升了系统的稳定性。展开更多
实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群...实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。展开更多
针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提...针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。展开更多
分布式光伏发电系统需要实时调整工作状态以适应环境变化,确保能量最大化输出。研究探索了最大功率点跟踪(Maximum Power Point Tracking,MPPT)的多种方法,包括扰动观测法、电导增量法、模糊逻辑控制法以及粒子群优化方法。这些方法通...分布式光伏发电系统需要实时调整工作状态以适应环境变化,确保能量最大化输出。研究探索了最大功率点跟踪(Maximum Power Point Tracking,MPPT)的多种方法,包括扰动观测法、电导增量法、模糊逻辑控制法以及粒子群优化方法。这些方法通过精细调节光伏系统的工作点,优化功率输出。各方法在响应速度、精度及稳定性方面表现各异,提供了有效的系统设计和实施指导。展开更多
为解决混合光伏-温差(photovoltaic thermoelectric generator,PV-TEG)系统的最大功率点跟踪(maximum power point tracking,MPPT)问题以提高能源转换效率和利用率,提出了一种基于指数分布优化器(exponential distribution optimizer,E...为解决混合光伏-温差(photovoltaic thermoelectric generator,PV-TEG)系统的最大功率点跟踪(maximum power point tracking,MPPT)问题以提高能源转换效率和利用率,提出了一种基于指数分布优化器(exponential distribution optimizer,EDO)的混合PV-TEG系统MPPT技术。EDO通过模拟指数分布的随机变化来搜索潜在的解空间,由于随机性,算法可有效避免在局部遮蔽条件(partial shading condition,PSC)下陷入局部最优,并在搜索空间中广泛探索以找到最优解。算例研究包括启动测试、太阳辐照度阶跃变化、随机变化、香港地区四季实际算例4个部分,并与其他5种算法进行对比分析,以较为全面地验证所提EDO技术在混合系统MPPT应用中的可行性和有效性。仿真结果表明,采用EDO的混合PV-TEG系统在不同运行条件下均能稳定、高效地实现最优越的MPPT性能,尤其是在春季低辐照度的条件下,EDO产生的能量分别超过蜻蜓算法(dragonfly algorithm,DA)、增量电导法(incremental conductance method,INC)、扰动观测法(perturbation observation method,P&O)能量输出的68.85%、66.13%和59.69%。展开更多
实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足...实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足。针对这一问题,提出一种基于布谷鸟搜索算法(cuckoo search algorithm, CS)和电导增量法(conductivity increment method, CI)结合的光伏MPPT算法,在算法前期利用布谷鸟搜索算法将大步长和小步长交替使用使得全局搜索能力增强,找到全局最大功率点所处区域附近;在后期,采用步长小、控制精度高的CI进行局部寻优,快速准确地锁定到最大功率点。在MATLAB/Simulink中搭建仿真模型,并与原始布谷鸟搜索算法和粒子群优化(particle swam optimization, PSO)算法进行比较。仿真结果表明,将CS与CI结合的算法使得收敛速度更快,精度更高,稳定状态时功率曲线的波动更小。展开更多
文摘针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)算法与扰动观察P&O(perturbation and observation)法混合控制的光伏系统最大功率跟踪策略。SFO算法同时使用旗鱼(捕食者)和沙丁鱼(猎物)2个种群,可保证粒子在全局空间探索。所提混合算法先利用SFO算法快速跟踪到最大功率点附近,再利用小步长P&O法对最大功率点进行精细搜索,最后利用分段步长的方法同时兼顾MPPT搜索速度和搜索精度的要求。仿真结果表明,所提混合控制策略有效提升了控制系统的响应速度及跟踪精度,提升了系统的稳定性。
文摘实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。
基金supported by National Natural Science Foundation of China(No.52067013)Natural Science Foundation of Gansu Province(No.21JR7RA280)。
文摘针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。
文摘分布式光伏发电系统需要实时调整工作状态以适应环境变化,确保能量最大化输出。研究探索了最大功率点跟踪(Maximum Power Point Tracking,MPPT)的多种方法,包括扰动观测法、电导增量法、模糊逻辑控制法以及粒子群优化方法。这些方法通过精细调节光伏系统的工作点,优化功率输出。各方法在响应速度、精度及稳定性方面表现各异,提供了有效的系统设计和实施指导。
文摘为解决混合光伏-温差(photovoltaic thermoelectric generator,PV-TEG)系统的最大功率点跟踪(maximum power point tracking,MPPT)问题以提高能源转换效率和利用率,提出了一种基于指数分布优化器(exponential distribution optimizer,EDO)的混合PV-TEG系统MPPT技术。EDO通过模拟指数分布的随机变化来搜索潜在的解空间,由于随机性,算法可有效避免在局部遮蔽条件(partial shading condition,PSC)下陷入局部最优,并在搜索空间中广泛探索以找到最优解。算例研究包括启动测试、太阳辐照度阶跃变化、随机变化、香港地区四季实际算例4个部分,并与其他5种算法进行对比分析,以较为全面地验证所提EDO技术在混合系统MPPT应用中的可行性和有效性。仿真结果表明,采用EDO的混合PV-TEG系统在不同运行条件下均能稳定、高效地实现最优越的MPPT性能,尤其是在春季低辐照度的条件下,EDO产生的能量分别超过蜻蜓算法(dragonfly algorithm,DA)、增量电导法(incremental conductance method,INC)、扰动观测法(perturbation observation method,P&O)能量输出的68.85%、66.13%和59.69%。