期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于DWT的路面不平度模拟的研究 被引量:1
1
作者 马俊福 付峰 孙麒 《浙江理工大学学报(自然科学版)》 2012年第3期395-398,共4页
为了更好地模拟实测路面不平度,提出了基于DWT的FD过程路面不平度模型。与传统的AR模型相比,该模型模拟的等级路面不平度精度高且时间开销小。利用离散小波变换对FD过程去相关,并采用平稳或非平稳FD过程最大可能性估计,对实测路面不平... 为了更好地模拟实测路面不平度,提出了基于DWT的FD过程路面不平度模型。与传统的AR模型相比,该模型模拟的等级路面不平度精度高且时间开销小。利用离散小波变换对FD过程去相关,并采用平稳或非平稳FD过程最大可能性估计,对实测路面不平度进行了模拟,结果表明:所模拟的路面不平度与实测路面不平度比较相近。 展开更多
关键词 路面不平度 FD过程 AR模型 离散小波变换 模拟 最大可能性估计
下载PDF
A novel domain-based method for predicting the functional classes of proteins
2
作者 YUXiaojing LINJiancheng SHITieliu LIYixue 《Chinese Science Bulletin》 SCIE EI CAS 2004年第22期2379-2384,共6页
Prediction of protein functions from known genomic sequences is an important mission of bioinformatics. One approach is to classify proteins into functional catego- ries. We have therefore developed a method based on ... Prediction of protein functions from known genomic sequences is an important mission of bioinformatics. One approach is to classify proteins into functional catego- ries. We have therefore developed a method based on protein domain composition and the maximum likelihood estimation (MLE) algorithm to classify proteins according to functions. Using the Saccharomyces cerevisiae genome, we compared the effectiveness of the MLE approach with that of an intui- tive and simple method. The MLE method outperformed the simple method, achieving an estimated specificity of 75.45% and an estimated sensitivity of 40.26%. These results indicate that domain is an important feature of proteins and is closely related to protein function. 展开更多
关键词 蛋白质 生物功能 域方法 最大可能性估计算法 期望最大化
原文传递
ASYMPTOTIC NORMALITY OF MAXIMUM QUASI-LIKELIHOOD ESTIMATORS IN GENERALIZED LINEAR MODELS WITH FIXED DESIGN 被引量:3
3
作者 Qibing GAO Yaohua WU +1 位作者 Chunhua ZHU Zhanfeng WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2008年第3期463-473,共11页
In generalized linear models with fixed design, under the assumption λ↑_n→∞ and other regularity conditions, the asymptotic normality of maximum quasi-likelihood estimator ^↑βn, which is the root of the quasi-li... In generalized linear models with fixed design, under the assumption λ↑_n→∞ and other regularity conditions, the asymptotic normality of maximum quasi-likelihood estimator ^↑βn, which is the root of the quasi-likelihood equation with natural link function ∑i=1^n Xi(yi -μ(Xi′β)) = 0, is obtained, where λ↑_n denotes the minimum eigenvalue of ∑i=1^nXiXi′, Xi are bounded p × q regressors, and yi are q × 1 responses. 展开更多
关键词 Asymptotic normality fixed design generalized linear models maximum quasi-likelihood estimator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部