基于四叉树的分层马尔可夫随机场(Markov random field,MRF)模型在层间存在因果性,不需要像非因果马尔可夫随机场模型那样的迭代算法,但是传统的分层MRF模型常常导致分割结果具有块状现象和非连续边缘.本文提出一种新的基于区域确定的...基于四叉树的分层马尔可夫随机场(Markov random field,MRF)模型在层间存在因果性,不需要像非因果马尔可夫随机场模型那样的迭代算法,但是传统的分层MRF模型常常导致分割结果具有块状现象和非连续边缘.本文提出一种新的基于区域确定的半树分层MRF算法,并推导出它的最大后验边缘概率(Maximizer of the posteriori marginal,MPM)算法.在流域算法过分割结果的基础上,该模型将层间的点概率转换为区域概率,采用区域概率实现各层图像分割.从SAR图像的监督分割实验结果来看,本文提出的模型较好地克服了基于像素分层模型和单分辨率MRF模型带米的块现象和非连续边界,因而具有更好的分割结果.展开更多
运动图像序列分割是计算机视觉中的一个重要问题.本文采用基于贝叶斯框架的最大后验边缘概率算法进行运动目标分割.首先,重新定义贝叶斯框架中似然函数的平滑项,并采用区域收缩算法实现迭代过程中运动目标支持区的估计.然后提出一种通...运动图像序列分割是计算机视觉中的一个重要问题.本文采用基于贝叶斯框架的最大后验边缘概率算法进行运动目标分割.首先,重新定义贝叶斯框架中似然函数的平滑项,并采用区域收缩算法实现迭代过程中运动目标支持区的估计.然后提出一种通过区域中心和主轴表示6参数仿射运动的模型,通过区域主轴像素估计运动参数,提高算法执行速度,将估计问题转化为一个取值有界的最优化问题,采用 DIRECT 算法估计运动参数.该方法与传统方法相比,提高运动参数估计的准确性和稳定性.通过仿真实验结果证明该方法的有效性.展开更多
文摘基于四叉树的分层马尔可夫随机场(Markov random field,MRF)模型在层间存在因果性,不需要像非因果马尔可夫随机场模型那样的迭代算法,但是传统的分层MRF模型常常导致分割结果具有块状现象和非连续边缘.本文提出一种新的基于区域确定的半树分层MRF算法,并推导出它的最大后验边缘概率(Maximizer of the posteriori marginal,MPM)算法.在流域算法过分割结果的基础上,该模型将层间的点概率转换为区域概率,采用区域概率实现各层图像分割.从SAR图像的监督分割实验结果来看,本文提出的模型较好地克服了基于像素分层模型和单分辨率MRF模型带米的块现象和非连续边界,因而具有更好的分割结果.
文摘运动图像序列分割是计算机视觉中的一个重要问题.本文采用基于贝叶斯框架的最大后验边缘概率算法进行运动目标分割.首先,重新定义贝叶斯框架中似然函数的平滑项,并采用区域收缩算法实现迭代过程中运动目标支持区的估计.然后提出一种通过区域中心和主轴表示6参数仿射运动的模型,通过区域主轴像素估计运动参数,提高算法执行速度,将估计问题转化为一个取值有界的最优化问题,采用 DIRECT 算法估计运动参数.该方法与传统方法相比,提高运动参数估计的准确性和稳定性.通过仿真实验结果证明该方法的有效性.