Let G be a maximal outerplane graph and X0(G) the complete chromatic number of G. This paper determines exactly X0(G) for △(G)≠5 and proves 6≤X0.(G)≤7 for △(G) = 5, where △(G) is the maximum degree of vertices o...Let G be a maximal outerplane graph and X0(G) the complete chromatic number of G. This paper determines exactly X0(G) for △(G)≠5 and proves 6≤X0.(G)≤7 for △(G) = 5, where △(G) is the maximum degree of vertices of G.展开更多
基金Project supported by the Vatural SCience Foundation of LNEC.
文摘Let G be a maximal outerplane graph and X0(G) the complete chromatic number of G. This paper determines exactly X0(G) for △(G)≠5 and proves 6≤X0.(G)≤7 for △(G) = 5, where △(G) is the maximum degree of vertices of G.