期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
BN/SiC复合界面层对SiC纤维和PIP-Mini复合材料力学性能的影响 被引量:11
1
作者 吕晓旭 姜卓钰 +3 位作者 周怡然 齐哲 赵文青 焦健 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2020年第10期1099-1104,共6页
采用化学气相渗透(CVI)工艺,在SiC纤维表面沉积BN和BN/SiC复合界面层,对沉积界面层前后纤维的力学性能进行了评价。采用聚合物浸渍裂解(PIP)工艺进行致密化,制得以原纤维、BN界面层和BN/SiC界面层纤维增强的三种Mini-SiCf/SiC复合材料,... 采用化学气相渗透(CVI)工艺,在SiC纤维表面沉积BN和BN/SiC复合界面层,对沉积界面层前后纤维的力学性能进行了评价。采用聚合物浸渍裂解(PIP)工艺进行致密化,制得以原纤维、BN界面层和BN/SiC界面层纤维增强的三种Mini-SiCf/SiC复合材料,研究其微观结构和拉伸性能。结果表明:采用CVI工艺制得的界面层厚度均匀、结构致密,其中BN界面层中存在六方相,晶体尺寸为1.76 nm;SiC界面层结晶性较好,晶粒尺寸为18.73 nm;沉积界面层后SiC纤维的弹性模量基本保持不变,拉伸强度降低。与SiCf/SiC相比,PIP工艺制备的SiCf/BN/SiC和SiCf/(BN/SiC)/SiC-Mini复合材料所能承受的最大拉伸载荷和断裂应变明显提升,BN界面层起主要作用。由断面形貌分析可以看出,SiCf/BN/SiC和SiCf/(BN/SiC)/SiC复合材料的纤维拔出明显,说明在断裂时消耗的能量增加,可承受的最大载荷增大。 展开更多
关键词 BN/SiC复合界面层 Mini-SiCf/SiC复合材料 最大拉伸载荷 断裂应变
下载PDF
Anatomical and biomechanical study on the interosseous membrane of the cadaveric forearm 被引量:1
2
作者 YI Xian-hong PAN Jun GUO Xiao-shan 《Chinese Journal of Traumatology》 CAS 2011年第3期147-150,共4页
Objective: To study the anatomical and biomechanical features of the interosseous membrane 0OM) of the cadaveric forearm. Methods: Ten radius-IOM-ulna structures were harvested from fresh-frozen cadavers to measur... Objective: To study the anatomical and biomechanical features of the interosseous membrane 0OM) of the cadaveric forearm. Methods: Ten radius-IOM-ulna structures were harvested from fresh-frozen cadavers to measure the length, width and thickness of the tendinous portion oflOM. Then, the tendinous portion was isolated along with the ulnar and radial ends to which the tendon attached after measurement. The proximal portion of the radius and the distal portion of the ulna were embedded and fixed in the dental base acrylic resin powder. The embedded specimen was clamped and fixed by the MTS 858 test machine using a 10 000 N load cell for the entire tensile test. IOM was stretched at a speed of 50 mm/min until it was ruptured. The load-displacement curve was depicted with a computer and the maximum load and stiffness were recorded at the same time. Results: The IOM of the forearm was composed of three portions: central tendinous tissue, membranous tis-sue and dorsal affiliated oblique cord. IOM was stretched at a neutral position, and flexed at pronation and supination positions. The tendinous portion of IOM was lacerated in 6 specimens when the point of the maximum load reached to 1 021.50 N± 250.13 N, the stiffness to 138.24 N/m±24.29 N/m, and the length of stretch to 9.77 mm±l.77 mm. Fracture occurred at the fixed end of the ulna before laceration of the tendinous portion in 4 specimens when the maximum load was 744.40 N±109.85 N, the stiffness was 151.17 N/m±30.68 N/m, and the length of the stretch was 6.51 mm±0.51 mm. Conclusions: The IOM of the forearm is a structure having ligamentous characteristics between the radius and the ulna. It is very important for maintenance of the longitudinal stability of the forearm. The anatomical and biomechanical data can be used as an objective criterion for evaluating the reconstructive method of IOM of the forearm. 展开更多
关键词 FOREARM ANATOMY BIOMECHANICS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部