The space-time spreading (SIS), superimposed training sequences and space-time coding (STC) are adopted to obtain a closed-form of average error probability upper bound and maximum likelihood esti- mation expressi...The space-time spreading (SIS), superimposed training sequences and space-time coding (STC) are adopted to obtain a closed-form of average error probability upper bound and maximum likelihood esti- mation expression for multiple input and multiple output (MIMO) correlated frequency-selective channel in the presence of interference (colored interference). Moreover, the correlation at both ends of the wire- less link that can be incorporated equivalently into correlation at the transmit end is derived. Finally, the mean square error (MSE) of the maximum likelihood estimate is also derived.展开更多
This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadc...This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.展开更多
The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to cor...The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to correct it. The proposed algorithm enables clock synchronization error estimation from a pilot whose duration is only two symbol periods. The study shows that this method is simple and exact. The clock synchronization error can be corrected almost entirely.展开更多
基金the National High Technology Research and Development Program of China(2002AA123032)
文摘The space-time spreading (SIS), superimposed training sequences and space-time coding (STC) are adopted to obtain a closed-form of average error probability upper bound and maximum likelihood esti- mation expression for multiple input and multiple output (MIMO) correlated frequency-selective channel in the presence of interference (colored interference). Moreover, the correlation at both ends of the wire- less link that can be incorporated equivalently into correlation at the transmit end is derived. Finally, the mean square error (MSE) of the maximum likelihood estimate is also derived.
基金supported by the National Natural Science Foundation of China under Grant No.61571452 and No.61201331
文摘This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.
文摘The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to correct it. The proposed algorithm enables clock synchronization error estimation from a pilot whose duration is only two symbol periods. The study shows that this method is simple and exact. The clock synchronization error can be corrected almost entirely.